Advertisement

The neurocognitive effects of simulated use-of-force scenarios

  • Donald M. DawesEmail author
  • Jeffrey D. Ho
  • Andrea S. Vincent
  • Paul C. Nystrom
  • Johanna C. Moore
  • Lila W. Steinberg
  • Anne Marie K. Tilton
  • Michael A. Brave
  • Marc S. Berris
  • James R. Miner
Original Article

Abstract

While the physiologic effects of modern conducted electrical weapons (CEW) have been the subject of numerous studies, their effects on neurocognitive functioning, both short-term and long-term, are less well understood. It is also unclear how these effects compare to other use-of-force options or other arrest-related stressors. We compared the neurocognitive effects of an exposure to a TASER® (TASER International, Inc, Scottsdale, AZ) X26™ CEW to four other use-of-force scenarios during a training exercise using a well-established neurocognitive metric administered repeatedly over 1 h. Overall, we found that there was a decline in neurocognitive performance immediately post-scenario in all groups, but this effect was transient, of questionable clinical significance, and returned to baseline by 1 h post-scenario.

Keywords

TASER Conducted electrical weapon CEW Neurocognitive Use-of-force K-9 Oleoresin capsicum Pepper spray Fight Flight 

References

  1. 1.
    Kandt v. TASER International, Inc., 2nd Cir. NY; 2012.Google Scholar
  2. 2.
    U.S. v. Chancellor, S.D. Fla; 2008.Google Scholar
  3. 3.
    U.S. v. Mack, M.D. La; 2009.Google Scholar
  4. 4.
    Bryan C, Hernandez AM. Magnitudes of decline on automated neuropsychological assessment metrics subtest sores relative to predeployment baseline performance among service members evaluated for traumatic brain injury in Iraq. J Head Trauma Rehabil. 2012;27(1):45–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Thorne DR. Throughput: a simple performance index with desirable characteristics. Behav Res Methods. 2006;38(4):569–73.PubMedCrossRefGoogle Scholar
  6. 6.
    Short P, Cernich A, Wilken J, Kane R. Initial construct validation of frequently employed ANAM measures through structural equation modeling. Arch Clin Neuropsychol. 2007;22S:S63–77.CrossRefGoogle Scholar
  7. 7.
    Reich S, Short P, Kane R, Weiner W, Shulman L, Anderson K. Validation of the ANAM test battery in Parkinson’s disease. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA452204. Accessed 25 Feb 2013.
  8. 8.
    McDiarmid MA, Engelhardt SM, Oliver M, Gucer P, Wilson PD, Kane R, Cernich A, Kaup B, Anderson L, Hoover D, Brown J, Albertini R, Gudi R, Jacoson-Kram D, Squibb KS. Health surveillance of Gulf War I veterans exposed to depleted uranium: updating the cohort. Health Phys. 2007;93(1):60–73.PubMedCrossRefGoogle Scholar
  9. 9.
    Harris WC, Hancock PA. Field assessment of cognitive performance under stress. In: Proceedings of HFES 47th annual meeting. 2003;1953–7.Google Scholar
  10. 10.
    Harris WC, Hancock PA, Harris SC. Information processing changes following extended stress. Mil Psychol. 2005;17(2):115–28.CrossRefGoogle Scholar
  11. 11.
    Harris WC, Hancock PA, Morgan CA, editors. Cognitive change in special forces personnel following stressful survival training. In: Proceedings of HFES 49th annual meeting. 2005;1776–9.Google Scholar
  12. 12.
    Chelune GJ, Naugle RI, Luders H, Sedlak J, Awad IA. Individual change after epilepsy surgery: practice effects and base-rate information. Neuropsychol. 1993;7:41–52.CrossRefGoogle Scholar
  13. 13.
    Vincent AS, Roebuck-Spencer T, Lopez MS, Twillie DA, Logan BW, Grate SJ, Friedl KE, Schlegel RE, Gilliland K. Effects of military deployment on cognitive functioning. Mil Med. 2012;177(3):248–55.PubMedCrossRefGoogle Scholar
  14. 14.
    Criscione J, Boggess M. An independent assessment of the physiological and cognitive effects from the X26 TASER device in volunteer human subjects, Contract W911QY-08-C-0023 (U.S. Marine Corps Joint Non-Lethal Weapons Program) Final Report. Texas A&M University; 2009.Google Scholar
  15. 15.
    Martinelli R, Staton J. The forensic force series: psychophysiological responses to TASER-ECD influence. Law Enforc Exec Forum. 2010;10(4):101–13.Google Scholar
  16. 16.
    Crews W, Barth J, Brelsford T, Francis J, McArdle P. Neuropsychological dysfunction in severe accidental electrical shock: two case reports. Appl Neuropsychol. 1997;4(4):208–19.PubMedCrossRefGoogle Scholar
  17. 17.
    Salisbury v. Itasca County, 8th Cir. Minn; 2010.Google Scholar
  18. 18.
    Graham v. Connor, 490 U.S. 386, 296; 1989.Google Scholar
  19. 19.
    Bryan v. MacPherson, 9th Cir. Cal; 2010.Google Scholar
  20. 20.
    Ho J, Dawes D, Nelson R, Lundin E, Ryan F, Overton K, Zeiders A, Miner J. Acidosis and catecholamine evaluation following simulated law enforcement use of force encounters. Acad Emerg Med. 2010;17(7):e60–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Donald M. Dawes
    • 1
    • 2
    Email author
  • Jeffrey D. Ho
    • 3
    • 4
  • Andrea S. Vincent
    • 5
  • Paul C. Nystrom
    • 3
  • Johanna C. Moore
    • 3
  • Lila W. Steinberg
    • 3
  • Anne Marie K. Tilton
    • 6
  • Michael A. Brave
    • 7
  • Marc S. Berris
    • 4
    • 8
  • James R. Miner
    • 3
  1. 1.Lompoc Valley Medical CenterLompocUSA
  2. 2.Santa Barbara Police DepartmentSanta BarbaraUSA
  3. 3.Department of Emergency MedicineHennepin County Medical CenterMinneapolisUSA
  4. 4.Meeker County Sheriff’s OfficeLitchfieldUSA
  5. 5.University of OklahomaNormanUSA
  6. 6.College of MedicineUniversity of ArizonaPhoenixUSA
  7. 7.LAAW International, LLCScottsdaleUSA
  8. 8.Segal, Roston and Berris, PLLPMinneapolisUSA

Personalised recommendations