Skip to main content

Maximizing postmortem oral-facial data to assist identification following severe incineration



This paper reviews the literature for methods of maximizing the postmortem oral-facial information available for a comparison to be made for identification following an incident resulting in incineration.


A search was initially instigated utilizing PubMed, Scopus, and Google Scholar, with further library searches and correspondences among peers around the world leading to a comprehensive review of the literature.


Maximizing postmortem dental evidence in a severe incineration event requires correct recognition and recording of dental data. Odontologists should attend the scene to facilitate this recognition. The information should be documented, photographed, and stabilized before retrieval. Wrapping, padding, and further support of the remains during transportation to the examination mortuary will aid this process. Examination at the mortuary requires further photography, complete charting, and radiographic examination of any dental material available, as well as awareness of other possible medical evidence, to enable identification of the human remains.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Balato N, Ayala F, Megna M, Balato A, Patruno C. Climate change and skin. G Ital Dermatol Venereol. 2013;148(1):135–46.

    CAS  PubMed  Google Scholar 

  2. 2.

    Pechony O, Shindell DT. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci USA. 2010;107(45):19167–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. 3.

    Byard RW, Gilbert JD, Kostakis C, Heath KJ. Circumstances of death and diagnostic difficulties in brushfire fatalities. J Forensic Sci. 2012;57(4):969–72.

    PubMed  Google Scholar 

  4. 4.

    Johnston FH. Bushfires and human health in a changing environment. Aust Fam Physician. 2009;38:720–4.

    PubMed  Google Scholar 

  5. 5. Tragedy. 2013. Accessed 18 Aug 2013.

  6. 6.

    Post H. Lac-megnatic disaster: Canadian Pacific Railroad rejects Quebec’s demand for money. 2013. Accessed 18 Aug 2013.

  7. 7.

    Bonavilla JD, Bush MA, Bush PJ, Pantera EA. Identification of incinerated root canal filling materials after exposure to high heat incineration. J Forensic Sci. 2008;53(2):412–8.

    PubMed  Google Scholar 

  8. 8.

    Muthusubramanian M, Limson KS, Julian R. Analysis of rugae in burn victims and cadavers to simulate rugae identification in cases of incineration and decomposition. J Forensic Odontostomatol. 2005;23(1):26–9.

    CAS  PubMed  Google Scholar 

  9. 9.

    Cordner SM, Woodford N, Bassed R. Forensic aspects of the 2009 Victorian bushfires disaster. Forensic Sci Int. 2011;205(1–3):2–7.

    PubMed  Google Scholar 

  10. 10.

    DVI guide (database on the Internet). 2009. Accessed 18 Aug 2013.

  11. 11.

    Holden JL, Clement JG, Phakey PP. Age and temperature related changes to the ultrastructure and composition of human bone mineral. J Bone Miner Res. 1995;10(9):1400–9.

    CAS  PubMed  Google Scholar 

  12. 12.

    Von Wurmb-Schwark N, Simeoni E, Ringleb A, Oehmichen M. Genetic investigation of modern burned corpses. Int Congr Ser. 2004;1261:50–2.

    Google Scholar 

  13. 13.

    Senn DR, Weems RA. Manual of forensic odontology. 5th ed. Boca Raton: CRC Press; 2013.

    Google Scholar 

  14. 14.

    Bush MA, Bush PJ, Miller RG. Detection and classification of composite resins in incinerated teeth for forensic purposes. J Forensic Sci. 2006;51(3):636–42.

    CAS  PubMed  Google Scholar 

  15. 15.

    Fairgrieve SI. Forensic cremation. Recovery and analysis. Boca Raton: CRC Press; 2008.

    Google Scholar 

  16. 16.

    Bohnert M, Rost T, Pollack S. The degree of destruction of human bodies in relation to the duration of the fire. Forensic Sci Int. 1998;95(1):11–21.

    CAS  PubMed  Google Scholar 

  17. 17.

    Woisetschläger M, Lussi A, Persson A, Jackowski C. Fire victim identification by post-mortem dental CT: radiologic evaluation of restorative materials after exposure to high temperatures. Eur J Radiol. 2011;80:432–40.

    PubMed  Google Scholar 

  18. 18.

    White TD. Human osteology. San Diego: Academic press; 1991.

    Google Scholar 

  19. 19.

    Marella GL, Rossi P. An approach to person identification by means of dental prostheses in a burnt corpse. J Forensic Odontostomatol. 1999;17(1):16–9.

    CAS  PubMed  Google Scholar 

  20. 20.

    Rossouw RJ, Grobler SR, Phillips VM, Van W Kotze TJ. The effects of extreme temperatures on composite, compomer and ionomer restorations. J Forensic Odontostomatol. 1999;17(1):1–4.

    CAS  PubMed  Google Scholar 

  21. 21.

    Hill AJ, Lain R, Hewson I. Preservation of dental evidence following exposure to high temperatures. Forensic Sci Int. 2011;205(1–3):40–3.

    PubMed  Google Scholar 

  22. 22.

    Bush MA, Miller RG, Prutsman-Pfeiffer J, Bush PJ. Identification through X-ray fluorescence analysis of dental restorative resin materials: a comprehensive study of noncremated, cremated, and processed-cremated individuals. J Forensic Sci. 2007;52(1):157–65.

    CAS  PubMed  Google Scholar 

  23. 23.

    Merbs CF. Cremated human remains from point of Pines, Arizona: a new approach. Am Antiquity. 1967;32(4):498–506.

    Google Scholar 

  24. 24.

    Bastiaan RJ. Dental identification of the Victorian bushfire victims. Aust Dent J. 1984;29(2):105–10.

    CAS  PubMed  Google Scholar 

  25. 25.

    Dumancic J, Kaic Z, Njemirovskij V, Brkic H, Zecevic D. Dental identification after two mass disasters in Croatia. Croat Med J. 2001;42(6):657–62.

    CAS  PubMed  Google Scholar 

  26. 26.

    Jakobsen J, Remvig P. Identification of victims after a fire on the ferry “Scandinavian Star”. Tandlaegebladet. 1991;95(8):325–30.

    CAS  PubMed  Google Scholar 

  27. 27.

    Krompecher T, Brandt-Casadevall C, Horisberger B, Perrier M, Zollinger U. The challenge of identification following the tragedy of the Solar Temple (Cheiry/Salvan, Switzerland). Forensic Sci Int. 2000;110(3):215–26.

    CAS  PubMed  Google Scholar 

  28. 28.

    Labovich MH, Duke JB, Ingwersen KM, Roath DB. Management of a multinational mass fatality incident in Kaprun, Austria: a forensic medical perspective. Mil Med. 2003;168(1):19–23.

    PubMed  Google Scholar 

  29. 29.

    McCarroll JE, Fullerton CS, Ursano RJ, Hermsen JM. Posttraumatic stress symptoms following forensic dental identification: Mt. Carmel, Waco, Texas. Am J Psychiat. 1996;153(6):778–82.

    CAS  PubMed  Google Scholar 

  30. 30.

    Solheim T, Lorentsen M, Sundnes PK, Bang G, Bremnes L. The “Scandinavian Star” ferry disaster 1990-a challenge to forensic odontology. Int J Legal Med. 1992;104(6):339–45.

    CAS  PubMed  Google Scholar 

  31. 31.

    Valenzuela A, Martin-de las Heras S, Marques T, Exposito N, Bohoyo JM. The application of dental methods of identification to human burn victims in a mass disaster. Int J Legal Med. 2000;113(4):236–9.

    CAS  PubMed  Google Scholar 

  32. 32.

    Chapenoire S, Schuliar Y, Corvisier JM. Rapid, efficient dental identification of 92% of 13 train passengers carbonized during a collision with a petrol tanker. Am J Forensic Med Path. 1998;19(4):352–5.

    CAS  Google Scholar 

  33. 33.

    Stene-Johansen W, Solheim T, Sakshaug O. Dental identification after the Dash 7 aircraft accident at Torghatten, Northern Norway, May 6th, 1988. J Forensic Odontostomatol. 1992;10(1):15–24.

    CAS  PubMed  Google Scholar 

  34. 34.

    Nambiar P, Jalil N, Singh B. The dental identification of victims of an aircraft accident in Malaysia. Inter Den J. 1997;47(1):9–15.

    CAS  Google Scholar 

  35. 35.

    Hill IR, Keiser-Nielsen S, Vermylen Y, de Valk E, Tormans E. Forensic odontology. Its scope and history. Solihull: Alan Clift Associates; 1984.

    Google Scholar 

  36. 36.

    Hardy JH. Forensic human identification: an introduction. Boca Raton: CRC Press; 2007.

    Google Scholar 

  37. 37.

    Yang F, Jacobs R, Willems G. Dental age estimation through volume matching of teeth imaged by cone-beam CT. Forensic Sci Int. 2006;159(Supplement):S78–83.

    PubMed  Google Scholar 

  38. 38.

    Jayaraman J, Wong H, King N, Roberts G. The French–Canadian data set of Demirjian for dental age estimation: a systematic review and meta-analysis. J Forensic Legal Med. 2013;20(5):373–81.

    Google Scholar 

  39. 39.

    Claes P, Vandermeulen D, De Greef S, Willems G, Clement JG, Suetens P. Computerized craniofacial reconstruction: conceptual framework and review. Forensic Sci Int. 2010;201(1–3):138–45.

    PubMed  Google Scholar 

  40. 40.

    Al-Amad S, McCullough M, Graham J, Clement JG, Hill A. Craniofacial identification by computer-mediated superimposition. J Forensic Odontostomatol. 2006;24(2):47–52.

    CAS  PubMed  Google Scholar 

  41. 41.

    Owsley DW. Identification of the fragmentary, burnt remains of two U.S. journalists seven years after their disappearance in Guatemala. J Forensic Sci. 1993;38(6):1372–82.

    CAS  PubMed  Google Scholar 

  42. 42.

    Marlin DC, Clark MAS. Identification of human remains by comparison of frontal sinus radiographs: a series of four cases. J Forensic Sci. 1991;36(6):1765–72.

    CAS  PubMed  Google Scholar 

  43. 43.

    Angyal M, Derczym K. Personal identification on the basis of antemortem and postmortem radiographs. J Forensic Sci. 1998;43(5):1089–93.

    CAS  PubMed  Google Scholar 

  44. 44.

    Nambiar P, Naidu MDK, Subramaniam K. Anatomical variability of the frontal sinuses and their application in forensic identification. Clin Anat. 1999;12:16–9.

    CAS  PubMed  Google Scholar 

  45. 45.

    Quartrehomme G, Fronty P, Sapanet M, Grevin G, Bailet P, Ollier A. Identification by frontal sinus pattern in forensic anthropology. Forensic Sci Int. 1996;83:147–53.

    Google Scholar 

  46. 46.

    Campobasso CP, Dell’Erba AS, Belviso M, Di Vella G. Craniofacial identification by comparison of antemortem and postmortem radiographs: two case reports dealing with burnt bodies. Am J Forensic Med Path. 2007;28(2):182–6.

    Google Scholar 

  47. 47.

    Haglund W, Fligner CL. Confirmation of human identification using computerized tomography. J Forensic Sci. 1993;38(3):708–12.

    CAS  PubMed  Google Scholar 

  48. 48.

    Kullman L, Ekland B, Grundin R. Value of the frontal sinus in identification of unknown persons. J Forensic Odontostomatol. 1990;8(1):3–10.

    CAS  PubMed  Google Scholar 

  49. 49.

    Cox M, Malcolm M, Fairgrieve SI. A new digital method for the objective comparison of frontal sinuses for identification. J Forensic Sci. 2009;54(4):761–72.

    PubMed  Google Scholar 

  50. 50.

    Reichs KJ. Quantified comparison of frontal sinus patterns by means of computed tomography. Forensic Sci Int. 1993;61(2–3):141–68.

    CAS  PubMed  Google Scholar 

  51. 51.

    Harris AMP, Wood RE, Nortje CJ, Thomas CJ. The frontal sinus: forensic fingerprint?—a pilot study. Sunscholar research repository. 1987. Accessed 18 Aug 2013.

  52. 52.

    Kirk NJ, Wood RE, Goldstein M. Skeletal identification using the frontal sinus region: a retrospective study of 39 cases. J Forensic Sci. 2002;47(2):318–23.

    PubMed  Google Scholar 

  53. 53.

    Yoshino M, Miyasaka S, Sato H, Seta S. Classification system of frontal sinus patterns by radiography. Its application to identification of unknown skeletal remains. Forensic Sci Int. 1987;34(4):289–99.

    CAS  PubMed  Google Scholar 

  54. 54.

    Cameriere R, Ferrante L, Mirtella D, Rollo FU, Cingolani M. Frontal sinuses for identification: quality of classifications, possible error and potential corrections. J Forensic Sci. 2005;50(4):770–3.

    PubMed  Google Scholar 

  55. 55.

    Christensen AM. Testing the reliability of frontal sinuses in positive identification. J Forensic Sci. 2005;50(1):18–22.

    PubMed  Google Scholar 

  56. 56.

    Culbert WL, Law FM. Identification by comparison of roentgenograms of nasal accessory sinuses and mastoid processes. JAMA. 1927;88(21):1634–6.

    Google Scholar 

  57. 57.

    Uthman AT, Al-Rawi NH, Al-Naaimi AS. Evaluation of maxillary sinus dimensions in gender determination using helical CT scanning. J Forensic Sci. 2011;56(2):403–8.

    PubMed  Google Scholar 

  58. 58.

    Teke HY. Determination of gender by measuring the size of the maxillary sinuses in computerized tomography scans. Surg Radiol Anat. 2007;29(1):9–13.

    PubMed  Google Scholar 

  59. 59.

    Fernandes CL. Forensic ethnic identification of crania: the role of the maxillary sinus-a new approach. Am J Forensic Med Path. 2004;54(4):302–13.

    Google Scholar 

  60. 60.

    Sandholzer MA, Walmsley AD, Lumley PJ, Landini G. Radiologic evaluation of heat-induced shrinkage and shape preservation of human teeth using micro-CT. J Forensic Radiol Imag. 2013;1:107–11.

    Google Scholar 

  61. 61.

    Holland TD. Use of the cranial base in the identification of fire victims. J Forensic Sci. 1989;34(2):458–60.

    CAS  PubMed  Google Scholar 

  62. 62.

    Berketa JW, Hirsch RS, Higgins D, James H. Radiographic recognition of dental implants as an aid to identifying the deceased. J Forensic Sci. 2010;55(1):66–70.

    PubMed  Google Scholar 

  63. 63.

    Berketa J, James H, Marino V. Survival of batch numbers within dental implants following incineration as an aid to identification. J Forensic Odontostomatol. 2010;28(1):1–4.

    CAS  PubMed  Google Scholar 

  64. 64.

    Coroner eases process to id fire victims. The Australian. 2009. Accessed 18 Aug 2013.

  65. 65.

    Correia PM, Beattie O. A critical look at methods for recovering, evaluating, and interpreting cremated human remains. Advances in forensic taphonomy. Boca Raton: CRC Press; 2002.

    Google Scholar 

  66. 66.

    Glassman DM, Crow RM. Standardization model for describing the extent of burn injury to human remains. J Forensic Sci. 1996;41(1):152–4.

    CAS  PubMed  Google Scholar 

  67. 67.

    Thompson TJ. Recent advances in the study of burned bone and their implications for forensic anthropology. Forensic Sci Int. 2004;146(Suppl):S203–5.

    PubMed  Google Scholar 

  68. 68.

    Reichs KJ. Forensic osteology: advances in the identification of human remains. 2nd ed. Springfield: Charles C. Thomas; 1998.

    Google Scholar 

  69. 69.

    Kalsbeek N. Preservation of burned bones: an investigation of the effects of temperature and pH on hardness. Stud Conserv. 2006;51(2):123.

    CAS  Google Scholar 

  70. 70.

    Griffiths CJ, Bellamy GD. Protection and radiography of heat affected teeth. Forensic Sci Int. 1993;60(1–2):57–60.

    CAS  PubMed  Google Scholar 

  71. 71.

    Lain R, Taylor J, Croker S, Craig P, Graham J. Comparative dental anatomy in Disaster Victim Identification: lessons from the 2009 Victorian bushfires. Forensic Sci Int. 2011;205(1–3):36–9.

    PubMed  Google Scholar 

  72. 72.

    Savio C, Merlati G, Danesino P, Fassina G, Menghini P. Radiographic evaluation of teeth subjected to high temperatures: experimental study to aid identification processes. Forensic Sci Int. 2006;158(2–3):108–16.

    CAS  PubMed  Google Scholar 

  73. 73.

    Merlati G, Danesino P, Savio C, Fassina G, Osculati A, Menghini P. Observations on dental prostheses and restorations subjected to high temperatures: experimental studies to aid identification processes. J Forensic Odontostomatol. 2002;20(2):17–24.

    CAS  PubMed  Google Scholar 

  74. 74.

    Muller M, Berytrand MF, Quatrehomme G, Bolla M, Rocca JP. Macroscopic and microscopic aspects of incinerated teeth. J Forensic Odontostomatol. 1998;16(1):1–7.

    CAS  PubMed  Google Scholar 

  75. 75.

    Karkhanis S, Ball J, Franklin D. Macroscopic and microscopic changes in incinerated deciduous teeth. J Forensic Odontostomatol. 2009;27(2):9–19.

    CAS  PubMed  Google Scholar 

  76. 76.

    Andersen L, Juhl M, Solheim T, Borrman H. Odontological identification of fire victims-potentialities and limitations. Int J Legal Med. 1995;107(5):229–34.

    CAS  PubMed  Google Scholar 

  77. 77.

    Asamura H, Takayanagi K, Ota M, Kobayashi K, Fukushima H. Unusual characteristic patterns of postmortem injuries. J Forensic Sci. 2004;49(3):592–4.

    PubMed  Google Scholar 

  78. 78.

    Bush MA, Miller RG, Norlander AL, Bush PJ. Analytical survey of restorative resins by SEM/EDS and XRF: databases for forensic purposes. J Forensic Sci. 2008;53(2):419–25.

    CAS  PubMed  Google Scholar 

  79. 79.

    Bertoluzza A, Brasili P, Casri L, Facchini F, Fagnano C, Tinti A. Preliminary results in dating human skeletal remains by Raman Spectroscopy. J Raman Spectrosc. 1997;28(2–3):185–8.

    CAS  Google Scholar 

  80. 80.

    Hinchliffe J. Forensic odontology, part 3. The Australian bushfires—Victoria state, February 2009. Brit Dent J. 2011;210(7):317–21.

    CAS  PubMed  Google Scholar 

  81. 81.

    Purves JD. Dental identification of fire victims. Forensic Sci. 1975;6(3):217–9.

    CAS  PubMed  Google Scholar 

  82. 82.

    Berketa JW, James H, Langlois N, Richards LC. Cochlear implants in the forensic identification process. Forensic Sci Med Path. 2013;9(3):422–6.

    Google Scholar 

  83. 83.

    Taylor PTG, Wilson ME, Lyons TJ. Forensic odontology lessons: multishooting incident at Port Arthur, Tasmania. Forensic Sci Int. 2002;130(2–3):174–82.

    PubMed  Google Scholar 

  84. 84.

    Hill AJ, Hewson I, Lain R. The role of the forensic odontologist in disaster victim identification: lessons for management. Forensic Sci Int. 2011;205(1–3):44–7.

    PubMed  Google Scholar 

  85. 85.

    Mincer HH, Berryman HE, Murray GA, Dickens RL. Methods for physical stabilization of ashed teeth in incinerated remains. J Forensic Sci. 1990;35(4):971–4.

    CAS  PubMed  Google Scholar 

  86. 86.

    Stephens BG, Hegler R. Use of glue gun in forensic anthropology and pathologic bone reconstruction cases. J Forensic Sci. 1989;34(2):454–7.

    CAS  PubMed  Google Scholar 

  87. 87.

    Fauzi A. Stabilization of incinerated dental remains. Adelaide University; 2011.

  88. 88.

    Cardoza AR. Dental forensic identification in the 2003 Cedar Fire. J Calif Dent Assoc. 2004;32(8):689–93.

    PubMed  Google Scholar 

  89. 89.

    Park DK, Park KH, Ko JS, Kim YS, Chung NE, Ahn YW, et al. The role of forensic anthropology in the examination of the Daegu subway disaster (2003, Korea). J Forensic Sci. 2009;54(3):513–8.

    PubMed  Google Scholar 

  90. 90.

    Acton C, Nixon J, Pearn J, Williams D, Leditschke F. Facial burns in children: a series analysis with implications for resuscitation and forensic odontology. Aust Dental J. 1999;44(1):20–4.

    CAS  Google Scholar 

  91. 91.

    Delattre VF. Burned beyond recognition: systematic approach to the dental identification of charred human remains. J Forensic Sci. 2000;45(3):589–96.

    CAS  PubMed  Google Scholar 

  92. 92.

    Thali MJ, Markwalder T, Jackowski C, Sonnenschein M, Dirnhofer R. Dental CT imaging as a screening tool for dental profiling: advantages and limitations. J Forensic Sci. 2006;51(1):113–9.

    PubMed  Google Scholar 

  93. 93.

    O’Donnell C, Iino M, Mansharan K, Leditschke J, Woodforde M. Contribution of postmortem multidetector CT scanning to identification of the deceased in a mass disaster: experience gained from the 2009 Victorian bushfires. Forensic Sci Int. 2011;205(1–3):15–28.

    PubMed  Google Scholar 

  94. 94.

    Eckert WG, James S, Kathis S. Investigation of cremations and severely burned bodies. Am J For Med Path. 1988;9(3):188–200.

    CAS  Google Scholar 

  95. 95.

    James H, Taylor J. Australasian & multinational disaster victim identification. In: Bowers CM, editor. Forensic dental evidence. 2nd ed. Burlington: Academic Press; 2010. p. 273–86.

    Google Scholar 

  96. 96.

    Berketa JW, James H, Lake AW. Forensic odontology involvement in disaster victim identification. Forensic Sci Med Path. 2012;8(2):148–56.

    Google Scholar 

  97. 97.

    Wood RE, Kogon SL. Dental radiology considerations in DVI incidents: a review. Forensic Sci Int. 2010;201(1–3):27–32.

    CAS  PubMed  Google Scholar 

  98. 98.

    Botha CT. The dental identification of fire victims. J Forensic Odontostomatol. 1986;4(2):67–75.

    CAS  PubMed  Google Scholar 

  99. 99.

    Kramer A. Hints and tips wide angle. Pop Photogr. 1989;96(8):53.

    Google Scholar 

  100. 100.

    Blenkin MRB, Evans W. Age estimation from the teeth using a modified Demirjian system. J Forensic Sci. 2010;55(6):1504–8.

    PubMed  Google Scholar 

  101. 101.

    Merlati G, Savlo C, Danesino P, Fassina G, Menghini P. Further study of restored and un-restored teeth subjected to high temperatures. J Forensic Odontostomatol. 2004;22(2):34–9.

    CAS  PubMed  Google Scholar 

  102. 102.

    Herschaft EE, Alder ME, Ord DK, Rawson RD, Smith ES. Manual of forensic odontology. 4th ed. Albany: Impress; 2006.

    Google Scholar 

  103. 103.

    Fairgrieve SI. SEM analysis of incinerated teeth as an aid to positive identification. J Forensic Sci. 1994;39(2):557–65.

    CAS  PubMed  Google Scholar 

  104. 104.

    Ayton FD, Hill CM, Parfitt HN. The dental role in the identification of the victims of the Bradford City Football Ground fire. Brit Den J. 1985;159(8):262–4.

    CAS  Google Scholar 

  105. 105.

    WinID. WinID3 Dental identification system. 2004. Accessed 18 Aug 2013.

  106. 106.

    Bassed R, Leditschke J. Forensic medical lessons learned from the Victorian Bushfire Disaster: recommendations from the Phase 5 debrief. Forensic Sci Int. 2011;205(1–3):73–6.

    PubMed  Google Scholar 

  107. 107.

    Beckett S, Rogers KD, Clement JG. Inter-species variation in bone mineral behavior upon heating. J Forensic Sci. 2011;56(3):571–9.

    CAS  PubMed  Google Scholar 

  108. 108.

    Sandholzer MA, Sui T, Korsunsky A, Walmsley AD, Lumley PJ, Landini G. X-ray scattering evaluation of ultrastructural changes of human dental tissues with thermal treatment. J Forensic Sci. 2013.

  109. 109.

    Piga G, Solinas G, Thompson TJU, Brunetti A, Malgosa A, Enzo S. Is X-ray diffraction able to distinguish between animal and human bones? J Archaeol Sci. 2013;40(1):778–85.

    CAS  Google Scholar 

  110. 110.

    Datta P, Datta SS. Role of deoxyribonucleic acid technology in forensic dentistry. J Forensic Dent Sci. 2012;4(1):42–6.

    PubMed Central  PubMed  Google Scholar 

  111. 111.

    Higgins D, Kaidonis J, Austin J, Townsend G, James H, Hughes T. Dentine and cementum as sources of nuclear DNA for use in human identification. Aust J Forensic Sci. 2011;43(4):287–95.

    Google Scholar 

  112. 112.

    Gaytmenn R, Sweet D. Quantification of forensic DNA from various regions of human teeth. J Forensic Sci. 2003;48(3):622–5.

    CAS  PubMed  Google Scholar 

  113. 113.

    Sweet DJ, Sweet CH. DNA analysis of dental pulp to link incinerated remains of homicide victim to crime scene. J Forensic Sci. 1995;40(2):310–4.

    CAS  PubMed  Google Scholar 

  114. 114.

    Higgins D, Austin JJ. Teeth as a source of DNA for forensic identification of human remains: a review. Sci Justice J Forensic Sci Soc. 2013. doi:10.1016/j.scijus.2013.06.001.

Download references


Many thanks to Helen James, Neil Langlois, and Pamela Mayne Correia for their assistance with this paper.

Author information



Corresponding author

Correspondence to John W. Berketa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berketa, J.W. Maximizing postmortem oral-facial data to assist identification following severe incineration. Forensic Sci Med Pathol 10, 208–216 (2014).

Download citation


  • Identification
  • Incineration
  • Postmortem data
  • Forensic odontology