Balato N, Ayala F, Megna M, Balato A, Patruno C. Climate change and skin. G Ital Dermatol Venereol. 2013;148(1):135–46.
CAS
PubMed
Google Scholar
Pechony O, Shindell DT. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci USA. 2010;107(45):19167–70.
CAS
PubMed Central
PubMed
Google Scholar
Byard RW, Gilbert JD, Kostakis C, Heath KJ. Circumstances of death and diagnostic difficulties in brushfire fatalities. J Forensic Sci. 2012;57(4):969–72.
PubMed
Google Scholar
Johnston FH. Bushfires and human health in a changing environment. Aust Fam Physician. 2009;38:720–4.
PubMed
Google Scholar
Azcentral.com. Tragedy. 2013. http://www.azcentral.com/news/wildfires/yarnell/imgs/0701.pdf. Accessed 18 Aug 2013.
Post H. Lac-megnatic disaster: Canadian Pacific Railroad rejects Quebec’s demand for money. 2013. http://www.huffingtonpost.ca/2013/08/15/lac-megantic-cp-rail_n_3762741.html. Accessed 18 Aug 2013.
Bonavilla JD, Bush MA, Bush PJ, Pantera EA. Identification of incinerated root canal filling materials after exposure to high heat incineration. J Forensic Sci. 2008;53(2):412–8.
PubMed
Google Scholar
Muthusubramanian M, Limson KS, Julian R. Analysis of rugae in burn victims and cadavers to simulate rugae identification in cases of incineration and decomposition. J Forensic Odontostomatol. 2005;23(1):26–9.
CAS
PubMed
Google Scholar
Cordner SM, Woodford N, Bassed R. Forensic aspects of the 2009 Victorian bushfires disaster. Forensic Sci Int. 2011;205(1–3):2–7.
PubMed
Google Scholar
DVI guide (database on the Internet). 2009. http://www.interpol.int/INTERPOL-expertise/Forensics/DVI-Pages/DVI-guide. Accessed 18 Aug 2013.
Holden JL, Clement JG, Phakey PP. Age and temperature related changes to the ultrastructure and composition of human bone mineral. J Bone Miner Res. 1995;10(9):1400–9.
CAS
PubMed
Google Scholar
Von Wurmb-Schwark N, Simeoni E, Ringleb A, Oehmichen M. Genetic investigation of modern burned corpses. Int Congr Ser. 2004;1261:50–2.
Google Scholar
Senn DR, Weems RA. Manual of forensic odontology. 5th ed. Boca Raton: CRC Press; 2013.
Google Scholar
Bush MA, Bush PJ, Miller RG. Detection and classification of composite resins in incinerated teeth for forensic purposes. J Forensic Sci. 2006;51(3):636–42.
CAS
PubMed
Google Scholar
Fairgrieve SI. Forensic cremation. Recovery and analysis. Boca Raton: CRC Press; 2008.
Google Scholar
Bohnert M, Rost T, Pollack S. The degree of destruction of human bodies in relation to the duration of the fire. Forensic Sci Int. 1998;95(1):11–21.
CAS
PubMed
Google Scholar
Woisetschläger M, Lussi A, Persson A, Jackowski C. Fire victim identification by post-mortem dental CT: radiologic evaluation of restorative materials after exposure to high temperatures. Eur J Radiol. 2011;80:432–40.
PubMed
Google Scholar
White TD. Human osteology. San Diego: Academic press; 1991.
Google Scholar
Marella GL, Rossi P. An approach to person identification by means of dental prostheses in a burnt corpse. J Forensic Odontostomatol. 1999;17(1):16–9.
CAS
PubMed
Google Scholar
Rossouw RJ, Grobler SR, Phillips VM, Van W Kotze TJ. The effects of extreme temperatures on composite, compomer and ionomer restorations. J Forensic Odontostomatol. 1999;17(1):1–4.
CAS
PubMed
Google Scholar
Hill AJ, Lain R, Hewson I. Preservation of dental evidence following exposure to high temperatures. Forensic Sci Int. 2011;205(1–3):40–3.
PubMed
Google Scholar
Bush MA, Miller RG, Prutsman-Pfeiffer J, Bush PJ. Identification through X-ray fluorescence analysis of dental restorative resin materials: a comprehensive study of noncremated, cremated, and processed-cremated individuals. J Forensic Sci. 2007;52(1):157–65.
CAS
PubMed
Google Scholar
Merbs CF. Cremated human remains from point of Pines, Arizona: a new approach. Am Antiquity. 1967;32(4):498–506.
Google Scholar
Bastiaan RJ. Dental identification of the Victorian bushfire victims. Aust Dent J. 1984;29(2):105–10.
CAS
PubMed
Google Scholar
Dumancic J, Kaic Z, Njemirovskij V, Brkic H, Zecevic D. Dental identification after two mass disasters in Croatia. Croat Med J. 2001;42(6):657–62.
CAS
PubMed
Google Scholar
Jakobsen J, Remvig P. Identification of victims after a fire on the ferry “Scandinavian Star”. Tandlaegebladet. 1991;95(8):325–30.
CAS
PubMed
Google Scholar
Krompecher T, Brandt-Casadevall C, Horisberger B, Perrier M, Zollinger U. The challenge of identification following the tragedy of the Solar Temple (Cheiry/Salvan, Switzerland). Forensic Sci Int. 2000;110(3):215–26.
CAS
PubMed
Google Scholar
Labovich MH, Duke JB, Ingwersen KM, Roath DB. Management of a multinational mass fatality incident in Kaprun, Austria: a forensic medical perspective. Mil Med. 2003;168(1):19–23.
PubMed
Google Scholar
McCarroll JE, Fullerton CS, Ursano RJ, Hermsen JM. Posttraumatic stress symptoms following forensic dental identification: Mt. Carmel, Waco, Texas. Am J Psychiat. 1996;153(6):778–82.
CAS
PubMed
Google Scholar
Solheim T, Lorentsen M, Sundnes PK, Bang G, Bremnes L. The “Scandinavian Star” ferry disaster 1990-a challenge to forensic odontology. Int J Legal Med. 1992;104(6):339–45.
CAS
PubMed
Google Scholar
Valenzuela A, Martin-de las Heras S, Marques T, Exposito N, Bohoyo JM. The application of dental methods of identification to human burn victims in a mass disaster. Int J Legal Med. 2000;113(4):236–9.
CAS
PubMed
Google Scholar
Chapenoire S, Schuliar Y, Corvisier JM. Rapid, efficient dental identification of 92% of 13 train passengers carbonized during a collision with a petrol tanker. Am J Forensic Med Path. 1998;19(4):352–5.
CAS
Google Scholar
Stene-Johansen W, Solheim T, Sakshaug O. Dental identification after the Dash 7 aircraft accident at Torghatten, Northern Norway, May 6th, 1988. J Forensic Odontostomatol. 1992;10(1):15–24.
CAS
PubMed
Google Scholar
Nambiar P, Jalil N, Singh B. The dental identification of victims of an aircraft accident in Malaysia. Inter Den J. 1997;47(1):9–15.
CAS
Google Scholar
Hill IR, Keiser-Nielsen S, Vermylen Y, de Valk E, Tormans E. Forensic odontology. Its scope and history. Solihull: Alan Clift Associates; 1984.
Google Scholar
Hardy JH. Forensic human identification: an introduction. Boca Raton: CRC Press; 2007.
Google Scholar
Yang F, Jacobs R, Willems G. Dental age estimation through volume matching of teeth imaged by cone-beam CT. Forensic Sci Int. 2006;159(Supplement):S78–83.
PubMed
Google Scholar
Jayaraman J, Wong H, King N, Roberts G. The French–Canadian data set of Demirjian for dental age estimation: a systematic review and meta-analysis. J Forensic Legal Med. 2013;20(5):373–81.
Google Scholar
Claes P, Vandermeulen D, De Greef S, Willems G, Clement JG, Suetens P. Computerized craniofacial reconstruction: conceptual framework and review. Forensic Sci Int. 2010;201(1–3):138–45.
PubMed
Google Scholar
Al-Amad S, McCullough M, Graham J, Clement JG, Hill A. Craniofacial identification by computer-mediated superimposition. J Forensic Odontostomatol. 2006;24(2):47–52.
CAS
PubMed
Google Scholar
Owsley DW. Identification of the fragmentary, burnt remains of two U.S. journalists seven years after their disappearance in Guatemala. J Forensic Sci. 1993;38(6):1372–82.
CAS
PubMed
Google Scholar
Marlin DC, Clark MAS. Identification of human remains by comparison of frontal sinus radiographs: a series of four cases. J Forensic Sci. 1991;36(6):1765–72.
CAS
PubMed
Google Scholar
Angyal M, Derczym K. Personal identification on the basis of antemortem and postmortem radiographs. J Forensic Sci. 1998;43(5):1089–93.
CAS
PubMed
Google Scholar
Nambiar P, Naidu MDK, Subramaniam K. Anatomical variability of the frontal sinuses and their application in forensic identification. Clin Anat. 1999;12:16–9.
CAS
PubMed
Google Scholar
Quartrehomme G, Fronty P, Sapanet M, Grevin G, Bailet P, Ollier A. Identification by frontal sinus pattern in forensic anthropology. Forensic Sci Int. 1996;83:147–53.
Google Scholar
Campobasso CP, Dell’Erba AS, Belviso M, Di Vella G. Craniofacial identification by comparison of antemortem and postmortem radiographs: two case reports dealing with burnt bodies. Am J Forensic Med Path. 2007;28(2):182–6.
Google Scholar
Haglund W, Fligner CL. Confirmation of human identification using computerized tomography. J Forensic Sci. 1993;38(3):708–12.
CAS
PubMed
Google Scholar
Kullman L, Ekland B, Grundin R. Value of the frontal sinus in identification of unknown persons. J Forensic Odontostomatol. 1990;8(1):3–10.
CAS
PubMed
Google Scholar
Cox M, Malcolm M, Fairgrieve SI. A new digital method for the objective comparison of frontal sinuses for identification. J Forensic Sci. 2009;54(4):761–72.
PubMed
Google Scholar
Reichs KJ. Quantified comparison of frontal sinus patterns by means of computed tomography. Forensic Sci Int. 1993;61(2–3):141–68.
CAS
PubMed
Google Scholar
Harris AMP, Wood RE, Nortje CJ, Thomas CJ. The frontal sinus: forensic fingerprint?—a pilot study. Sunscholar research repository. 1987. http://scholar.sun.ac.za/handle/10019.1/12256. Accessed 18 Aug 2013.
Kirk NJ, Wood RE, Goldstein M. Skeletal identification using the frontal sinus region: a retrospective study of 39 cases. J Forensic Sci. 2002;47(2):318–23.
PubMed
Google Scholar
Yoshino M, Miyasaka S, Sato H, Seta S. Classification system of frontal sinus patterns by radiography. Its application to identification of unknown skeletal remains. Forensic Sci Int. 1987;34(4):289–99.
CAS
PubMed
Google Scholar
Cameriere R, Ferrante L, Mirtella D, Rollo FU, Cingolani M. Frontal sinuses for identification: quality of classifications, possible error and potential corrections. J Forensic Sci. 2005;50(4):770–3.
PubMed
Google Scholar
Christensen AM. Testing the reliability of frontal sinuses in positive identification. J Forensic Sci. 2005;50(1):18–22.
PubMed
Google Scholar
Culbert WL, Law FM. Identification by comparison of roentgenograms of nasal accessory sinuses and mastoid processes. JAMA. 1927;88(21):1634–6.
Google Scholar
Uthman AT, Al-Rawi NH, Al-Naaimi AS. Evaluation of maxillary sinus dimensions in gender determination using helical CT scanning. J Forensic Sci. 2011;56(2):403–8.
PubMed
Google Scholar
Teke HY. Determination of gender by measuring the size of the maxillary sinuses in computerized tomography scans. Surg Radiol Anat. 2007;29(1):9–13.
PubMed
Google Scholar
Fernandes CL. Forensic ethnic identification of crania: the role of the maxillary sinus-a new approach. Am J Forensic Med Path. 2004;54(4):302–13.
Google Scholar
Sandholzer MA, Walmsley AD, Lumley PJ, Landini G. Radiologic evaluation of heat-induced shrinkage and shape preservation of human teeth using micro-CT. J Forensic Radiol Imag. 2013;1:107–11.
Google Scholar
Holland TD. Use of the cranial base in the identification of fire victims. J Forensic Sci. 1989;34(2):458–60.
CAS
PubMed
Google Scholar
Berketa JW, Hirsch RS, Higgins D, James H. Radiographic recognition of dental implants as an aid to identifying the deceased. J Forensic Sci. 2010;55(1):66–70.
PubMed
Google Scholar
Berketa J, James H, Marino V. Survival of batch numbers within dental implants following incineration as an aid to identification. J Forensic Odontostomatol. 2010;28(1):1–4.
CAS
PubMed
Google Scholar
Coroner eases process to id fire victims. The Australian. 2009. http://www.theage.com.au/national/coroner-eases-process-to-id-fire-victims-20090305-8q2v.html#ixzz1qqaXd0Ju. Accessed 18 Aug 2013.
Correia PM, Beattie O. A critical look at methods for recovering, evaluating, and interpreting cremated human remains. Advances in forensic taphonomy. Boca Raton: CRC Press; 2002.
Google Scholar
Glassman DM, Crow RM. Standardization model for describing the extent of burn injury to human remains. J Forensic Sci. 1996;41(1):152–4.
CAS
PubMed
Google Scholar
Thompson TJ. Recent advances in the study of burned bone and their implications for forensic anthropology. Forensic Sci Int. 2004;146(Suppl):S203–5.
PubMed
Google Scholar
Reichs KJ. Forensic osteology: advances in the identification of human remains. 2nd ed. Springfield: Charles C. Thomas; 1998.
Google Scholar
Kalsbeek N. Preservation of burned bones: an investigation of the effects of temperature and pH on hardness. Stud Conserv. 2006;51(2):123.
CAS
Google Scholar
Griffiths CJ, Bellamy GD. Protection and radiography of heat affected teeth. Forensic Sci Int. 1993;60(1–2):57–60.
CAS
PubMed
Google Scholar
Lain R, Taylor J, Croker S, Craig P, Graham J. Comparative dental anatomy in Disaster Victim Identification: lessons from the 2009 Victorian bushfires. Forensic Sci Int. 2011;205(1–3):36–9.
PubMed
Google Scholar
Savio C, Merlati G, Danesino P, Fassina G, Menghini P. Radiographic evaluation of teeth subjected to high temperatures: experimental study to aid identification processes. Forensic Sci Int. 2006;158(2–3):108–16.
CAS
PubMed
Google Scholar
Merlati G, Danesino P, Savio C, Fassina G, Osculati A, Menghini P. Observations on dental prostheses and restorations subjected to high temperatures: experimental studies to aid identification processes. J Forensic Odontostomatol. 2002;20(2):17–24.
CAS
PubMed
Google Scholar
Muller M, Berytrand MF, Quatrehomme G, Bolla M, Rocca JP. Macroscopic and microscopic aspects of incinerated teeth. J Forensic Odontostomatol. 1998;16(1):1–7.
CAS
PubMed
Google Scholar
Karkhanis S, Ball J, Franklin D. Macroscopic and microscopic changes in incinerated deciduous teeth. J Forensic Odontostomatol. 2009;27(2):9–19.
CAS
PubMed
Google Scholar
Andersen L, Juhl M, Solheim T, Borrman H. Odontological identification of fire victims-potentialities and limitations. Int J Legal Med. 1995;107(5):229–34.
CAS
PubMed
Google Scholar
Asamura H, Takayanagi K, Ota M, Kobayashi K, Fukushima H. Unusual characteristic patterns of postmortem injuries. J Forensic Sci. 2004;49(3):592–4.
PubMed
Google Scholar
Bush MA, Miller RG, Norlander AL, Bush PJ. Analytical survey of restorative resins by SEM/EDS and XRF: databases for forensic purposes. J Forensic Sci. 2008;53(2):419–25.
CAS
PubMed
Google Scholar
Bertoluzza A, Brasili P, Casri L, Facchini F, Fagnano C, Tinti A. Preliminary results in dating human skeletal remains by Raman Spectroscopy. J Raman Spectrosc. 1997;28(2–3):185–8.
CAS
Google Scholar
Hinchliffe J. Forensic odontology, part 3. The Australian bushfires—Victoria state, February 2009. Brit Dent J. 2011;210(7):317–21.
CAS
PubMed
Google Scholar
Purves JD. Dental identification of fire victims. Forensic Sci. 1975;6(3):217–9.
CAS
PubMed
Google Scholar
Berketa JW, James H, Langlois N, Richards LC. Cochlear implants in the forensic identification process. Forensic Sci Med Path. 2013;9(3):422–6.
Google Scholar
Taylor PTG, Wilson ME, Lyons TJ. Forensic odontology lessons: multishooting incident at Port Arthur, Tasmania. Forensic Sci Int. 2002;130(2–3):174–82.
PubMed
Google Scholar
Hill AJ, Hewson I, Lain R. The role of the forensic odontologist in disaster victim identification: lessons for management. Forensic Sci Int. 2011;205(1–3):44–7.
PubMed
Google Scholar
Mincer HH, Berryman HE, Murray GA, Dickens RL. Methods for physical stabilization of ashed teeth in incinerated remains. J Forensic Sci. 1990;35(4):971–4.
CAS
PubMed
Google Scholar
Stephens BG, Hegler R. Use of glue gun in forensic anthropology and pathologic bone reconstruction cases. J Forensic Sci. 1989;34(2):454–7.
CAS
PubMed
Google Scholar
Fauzi A. Stabilization of incinerated dental remains. Adelaide University; 2011.
Cardoza AR. Dental forensic identification in the 2003 Cedar Fire. J Calif Dent Assoc. 2004;32(8):689–93.
PubMed
Google Scholar
Park DK, Park KH, Ko JS, Kim YS, Chung NE, Ahn YW, et al. The role of forensic anthropology in the examination of the Daegu subway disaster (2003, Korea). J Forensic Sci. 2009;54(3):513–8.
PubMed
Google Scholar
Acton C, Nixon J, Pearn J, Williams D, Leditschke F. Facial burns in children: a series analysis with implications for resuscitation and forensic odontology. Aust Dental J. 1999;44(1):20–4.
CAS
Google Scholar
Delattre VF. Burned beyond recognition: systematic approach to the dental identification of charred human remains. J Forensic Sci. 2000;45(3):589–96.
CAS
PubMed
Google Scholar
Thali MJ, Markwalder T, Jackowski C, Sonnenschein M, Dirnhofer R. Dental CT imaging as a screening tool for dental profiling: advantages and limitations. J Forensic Sci. 2006;51(1):113–9.
PubMed
Google Scholar
O’Donnell C, Iino M, Mansharan K, Leditschke J, Woodforde M. Contribution of postmortem multidetector CT scanning to identification of the deceased in a mass disaster: experience gained from the 2009 Victorian bushfires. Forensic Sci Int. 2011;205(1–3):15–28.
PubMed
Google Scholar
Eckert WG, James S, Kathis S. Investigation of cremations and severely burned bodies. Am J For Med Path. 1988;9(3):188–200.
CAS
Google Scholar
James H, Taylor J. Australasian & multinational disaster victim identification. In: Bowers CM, editor. Forensic dental evidence. 2nd ed. Burlington: Academic Press; 2010. p. 273–86.
Google Scholar
Berketa JW, James H, Lake AW. Forensic odontology involvement in disaster victim identification. Forensic Sci Med Path. 2012;8(2):148–56.
Google Scholar
Wood RE, Kogon SL. Dental radiology considerations in DVI incidents: a review. Forensic Sci Int. 2010;201(1–3):27–32.
CAS
PubMed
Google Scholar
Botha CT. The dental identification of fire victims. J Forensic Odontostomatol. 1986;4(2):67–75.
CAS
PubMed
Google Scholar
Kramer A. Hints and tips wide angle. Pop Photogr. 1989;96(8):53.
Google Scholar
Blenkin MRB, Evans W. Age estimation from the teeth using a modified Demirjian system. J Forensic Sci. 2010;55(6):1504–8.
PubMed
Google Scholar
Merlati G, Savlo C, Danesino P, Fassina G, Menghini P. Further study of restored and un-restored teeth subjected to high temperatures. J Forensic Odontostomatol. 2004;22(2):34–9.
CAS
PubMed
Google Scholar
Herschaft EE, Alder ME, Ord DK, Rawson RD, Smith ES. Manual of forensic odontology. 4th ed. Albany: Impress; 2006.
Google Scholar
Fairgrieve SI. SEM analysis of incinerated teeth as an aid to positive identification. J Forensic Sci. 1994;39(2):557–65.
CAS
PubMed
Google Scholar
Ayton FD, Hill CM, Parfitt HN. The dental role in the identification of the victims of the Bradford City Football Ground fire. Brit Den J. 1985;159(8):262–4.
CAS
Google Scholar
WinID. WinID3 Dental identification system. 2004. http://www.winid.com/codes.htm. Accessed 18 Aug 2013.
Bassed R, Leditschke J. Forensic medical lessons learned from the Victorian Bushfire Disaster: recommendations from the Phase 5 debrief. Forensic Sci Int. 2011;205(1–3):73–6.
PubMed
Google Scholar
Beckett S, Rogers KD, Clement JG. Inter-species variation in bone mineral behavior upon heating. J Forensic Sci. 2011;56(3):571–9.
CAS
PubMed
Google Scholar
Sandholzer MA, Sui T, Korsunsky A, Walmsley AD, Lumley PJ, Landini G. X-ray scattering evaluation of ultrastructural changes of human dental tissues with thermal treatment. J Forensic Sci. 2013. https://www.researchgate.net/publication/236234508_X-ray_scattering_evaluation_of_ultrastructural_changes_of_human_dental_tissue_with_thermal_treatment.
Piga G, Solinas G, Thompson TJU, Brunetti A, Malgosa A, Enzo S. Is X-ray diffraction able to distinguish between animal and human bones? J Archaeol Sci. 2013;40(1):778–85.
CAS
Google Scholar
Datta P, Datta SS. Role of deoxyribonucleic acid technology in forensic dentistry. J Forensic Dent Sci. 2012;4(1):42–6.
PubMed Central
PubMed
Google Scholar
Higgins D, Kaidonis J, Austin J, Townsend G, James H, Hughes T. Dentine and cementum as sources of nuclear DNA for use in human identification. Aust J Forensic Sci. 2011;43(4):287–95.
Google Scholar
Gaytmenn R, Sweet D. Quantification of forensic DNA from various regions of human teeth. J Forensic Sci. 2003;48(3):622–5.
CAS
PubMed
Google Scholar
Sweet DJ, Sweet CH. DNA analysis of dental pulp to link incinerated remains of homicide victim to crime scene. J Forensic Sci. 1995;40(2):310–4.
CAS
PubMed
Google Scholar
Higgins D, Austin JJ. Teeth as a source of DNA for forensic identification of human remains: a review. Sci Justice J Forensic Sci Soc. 2013. doi:10.1016/j.scijus.2013.06.001.