Skip to main content

Post-mortem computed tomography and 3D imaging: anthropological applications for juvenile remains

Abstract

Anthropological examination of defleshed bones is routinely used in medico-legal investigations to establish an individual’s biological profile. However, when dealing with the recently deceased, the removal of soft tissue from bone can be an extremely time consuming procedure that requires the presence of a trained anthropologist. In addition, due to its invasive nature, in some disaster victim identification scenarios the maceration of bones is discouraged by religious practices and beliefs, or even prohibited by national laws and regulations. Currently, three different radiological techniques may be used in the investigative process; plain X-ray, dental X-ray and fluoroscopy. However, recent advances in multi-detector computed tomography (MDCT) mean that it is now possible to acquire morphological skeletal information from high resolution images, reducing the necessity for invasive procedures. This review paper considers the possible applications of a virtual anthropological examination by reviewing the main juvenile age determination methods used by anthropologists at present and their possible adaption to MDCT.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Byers SM. Introduction to Forensic Anthropology. Boston, MA: Pearson Education Inc; 2008.

    Google Scholar 

  2. 2.

    Robinson C, Eisma R, Morgan B, Jeffery A, Graham AM, Black S, et al. Anthropological measurement of lower limb and foot bones using multi-detector computed tomography. J Forensic Sci. 2008;53:1289–95.

    PubMed  Google Scholar 

  3. 3.

    Barker C, Cox M, Flavel A, Laver J, Loe L. Mortuary procedures II—skeletal analysis I: basic procedures and demographic assessment. In: Cox M, Flavel A, Hanson I, Laver J, Wessling R, editors. The scientific investigation of mass graves: towards protocols and standard operating procedures. New York: Cambridge University Press; 2008. p. 295–382.

    Google Scholar 

  4. 4.

    Interpol. Interpol Resolution: Disaster Victim Identification. 1996. http://www.interpol.int/Public/DisasterVictim/guide/appendices.asp#d . Accessed 23 Mar 2010.

  5. 5.

    Kahana T, Hiss J. Review article: forensic radiology. Br J Radiol. 1999;72:129–33.

    PubMed  CAS  Google Scholar 

  6. 6.

    Harcke HT, Bifano JA, Koeller KK. Forensic radiology: response to the pentagon attack on September 11. Radiology. 2002;223:7–8.

    PubMed  Article  Google Scholar 

  7. 7.

    Harcke HT, Levy AD, Abbott RM, Mallak CT, Getz JM, Champion HR, et al. Autopsy radiography: digital radiographs (DR) vs multidetector computed tomography (MDCT) in high-velocity gunshot-wound victims. Am J Forensic Med Pathol. 2007;28:13–9.

    PubMed  Article  Google Scholar 

  8. 8.

    Reid A, Schneider-Kolsky ME, O’Donnell CJ. Comparison of computed radiography and multi-detector computed tomography in the detection of post mortem metacarpal index. Forensic Sci Int. 2008;177:192–8.

    PubMed  Article  Google Scholar 

  9. 9.

    Kahana T, Ravioli JA, Urroz CL, Hiss J. Radiographic identification of fragmentary human remains from a mass disaster. Am J Forensic Med Pathol. 1997;18:40–4.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Hines E, Rock C, Viner M. Radiography. In: Thompson T, Black S, editors. Forensic human identification. Boca Raton, FL: CRC Press; 2006. p. 221–8.

    Google Scholar 

  11. 11.

    Aaron A, Weinstein D, Thickman D, Eilert R. Comparison of orthoroentgenography and computed tomography in the measurement of limb-length discrepancy. J Bone Jt Surg Am. 1992;74:897–902.

    CAS  Google Scholar 

  12. 12.

    Anderson NG, Fenwick JL, Wells JE. Intrinsic measurement bias on computed tomography scout view is unpredictable: computed tomography pelvimetry using a phantom. Aust Radiol. 2006;50:127–31.

    Article  CAS  Google Scholar 

  13. 13.

    Dedouit F, Telmon N, Costagliola R, Otal P, Florence LL, Joffre F, et al. New Identification possibilities with postmortem multislice computed tomography. Int J Leg Med. 2007;121:507–10.

    Article  Google Scholar 

  14. 14.

    Dedouit F, Telmon N, Costagliola R, Otal P, Joffre F, Rougé D. Virtual anthropology and forensic identification: report of one case. Forensic Sci Int. 2007;173:182–7.

    PubMed  Article  Google Scholar 

  15. 15.

    Haglund WD, Fligner CL. Confirmation of human identification using computerized tomography (CT). J Forensic Sci. 1992;38:708–12.

    Google Scholar 

  16. 16.

    Hayakawa M, Yamamoto S, Motani H, Yajima D, Sato Y, Iwase H. Does imaging technology overcome problems of conventional post-mortem examination? A trial of computed tomography imaging for postmortem examination. Int J Leg Med. 2006;120:24–6.

    Article  Google Scholar 

  17. 17.

    Leth PM. Computerized tomography used as a routine procedure at postmortem investigations. Am J Forensic Med Pathol. 2009;30:219–22.

    PubMed  Article  Google Scholar 

  18. 18.

    Plattner T, Thali MJ, Yen K, Sonnenschein M, Stoupis C, Vock P, et al. Virtopsy–postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) in a fatal scuba diving incident. J Forensic Sci. 2003;48:1–9.

    Google Scholar 

  19. 19.

    Rutty GN. Are invasive autopsies necessary? Forensic Sci Med Pathol. 2005;2:71–3.

    Article  Google Scholar 

  20. 20.

    Rutty GN, Robinson C, Jeffery A, Morgan B. Mobile computed tomography for mass fatality investigations. Forensic Scie Med Pathol. 2007;3:138–45.

    Article  Google Scholar 

  21. 21.

    Rutty GN, Robinson C, Jeffery A, Morgan B. The role of mobile computed tomography in mass fatality incidents. J Forensic Sci. 2007;52:1343–9.

    PubMed  Google Scholar 

  22. 22.

    Smith DR, Limbird KG, Hoffman MJ. Identification of human skeletal remains by comparison of bony details of the cranium using compyterized tomographic (CT) scans. J Forensic Sci. 2002;47:1–3.

    Google Scholar 

  23. 23.

    Thali MJ, Schweitzer W, Yen K, Vock P, Ozdoba C, Spielvogel E, et al. New horizons in forensic radiology. Am J Forensic Med Pathol. 2003;24:22–7.

    PubMed  Google Scholar 

  24. 24.

    Thali MJ, Yen K, Schweitzer W, Vock P, Ozdoba C, Dirnhofer R. Into the decomposed body-forensic digital autopsy using multislice-computed tomography. Forensic Sci Int. 2003;134:109–14.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Thali MJ, Markwalder T, Jackowski C, Sonnenschein M, Dirnhofer R. Dental CT imaging as a screening tool for dental profiling: advantages and limitations. J Forensic Sci. 2006;51:113–9.

    PubMed  Article  Google Scholar 

  26. 26.

    Verhoff MA, Ramsthaler F, Kra¨hahn J, Deml U, Gille RJ, Grabherr S, et al. Digital forensic osteology—possibilities in cooperation with the virtopsy project. Forensic Sci Int. 2008;174:152–6.

    PubMed  Article  Google Scholar 

  27. 27.

    Rutty GN, Morgan B, O’Donnell C, Leth PM, Thali M. Forensic institutes across the world place CT or MRI scanners or both into their mortuaries. J Trauma. 2008;65:493–4.

    PubMed  Article  Google Scholar 

  28. 28.

    Seeram E. Computed tomography: physical principles clinical applications, and quality control. Philadelphia, PA: Saunders; 2001.

    Google Scholar 

  29. 29.

    Hildebolt CF, Vannier MW, Knapp RH. Validation study of skull three-dimensional computerized tomography measurements. Am J Phys Anthropol. 1990;82:283–94.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Rutty GN, Robinson C, Morgan B, Vernon L, Black S, Adams C, et al. Fimag: the United Kingdom disaster victim/forensic identification imaging system. J Forensic Sci. 2009;54:1438–42.

    PubMed  Article  Google Scholar 

  31. 31.

    Weber GW, Schäfer K, Prossinger H, Gunz P, Mitteröcker P, Seidler H. Virtual anthropology: the digital evolution in anthropological sciences. J Physiol Anthropol Appl Hum Sci. 2001;20:69–80.

    Article  CAS  Google Scholar 

  32. 32.

    Scheuer L, Black S. Developmental juvenile osteology. San Diego: Academic Press; 2000.

    Google Scholar 

  33. 33.

    Maresh MM, Deming J. The growth of the long bones in 80 infants. Roentgenograms versus anthropometry. Child Dev. 1939;10:91–106.

    Google Scholar 

  34. 34.

    Cattaneo C. Anthropology: age determination of remains. In: Jamieson A, Moenssens A, editors. Wiley encyclopedia of forensic science. New York: Wiley; 2009.

    Google Scholar 

  35. 35.

    Schmeling A, Reisinger W, Geserick G, Olze A. Age estimation of unaccompanied minors, part 1. General considerations. Forensic Sci Int. 2006;159S:S61–4.

    Article  Google Scholar 

  36. 36.

    Schmeling A, Geserick G, Reisinger W, Olze A. Age estimation. Forensic Sci Int. 2007;165:178–81.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Konigsberg LW, Herrmann NP, Wescott DJ, Kimmerle EH. Estimation and evidence in forensic anthropology: age-at-death. J Forensic Sci. 2008;53:541–57.

    PubMed  Article  Google Scholar 

  38. 38.

    Cunha E, Baccino E, Martille L, Ramsthaler F, Prieto J, Schuliar Y, et al. The problem of aging human remains and living individuals: a review. Forensic Sci Int. 2009;193:1–13.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Scheuer L. Application of osteology to forensic medicine. Clin Anat. 2002;15:297–312.

    PubMed  Article  Google Scholar 

  40. 40.

    Mincer HH, Harris EF, Berryman HE. The A.B.F.O. study of third molar development and its use as an estimator of chronological age. J Forensic Sci. 1993;38:379–90.

    PubMed  CAS  Google Scholar 

  41. 41.

    Maber M, Liversidge HM, Hector MP. Accuracy of age estimation of radiographic methods using developing teeth. Forensic Sci Int. 2006;159:S68–73.

    PubMed  Article  Google Scholar 

  42. 42.

    Cavalcanti MGP, Rocha SS, Vannier MW. Craiofacial measurements based on 3D-CT volume rendering: implications for clinical applications. Dentomaxillofacial Radiol. 2004;33:170–6.

    Article  CAS  Google Scholar 

  43. 43.

    Grabherr S, Cooper C, Ulrich-Bochsler S, Uldin T, Ross S, Oesterhelweg L, et al. Estimation of sex and age of “Virtual Skeletons”—a feasibility study. Eur Radiol. 2009;19:419–29.

    PubMed  Article  Google Scholar 

  44. 44.

    Logan WHG, Kronfeld R. Development of the human jaws and surrounding structures from birth to the age of fifteen years. JADA. 1933;20:379–427.

    Google Scholar 

  45. 45.

    Schour I, Massler M. Rate and gradient of growth in human deciduous teeth with special reference to neonatal ring. J Dent Res. 1937;16:349–50.

    Google Scholar 

  46. 46.

    Demirjian A. A new system of dental age assessment. Hum Biol. 1973;45:211.

    PubMed  CAS  Google Scholar 

  47. 47.

    Kosa F. Age estimation from the fetal skeleton. In: Iscan MY, editor. Age markers in the human skeleton. Springfield, IL: Carles C Thomas; 1989. p. 21–54.

    Google Scholar 

  48. 48.

    Smith SL, Buschang PH. Longitudinal models of long bone growth during adolescence. Am J Hum Biol. 2005;17:731–45.

    PubMed  Article  Google Scholar 

  49. 49.

    Smith SL, Buschang PH. Variation in longitudinal diaphyseal long bone growth in children three to ten years of age. Am J Hum Biol. 2004;16:648–57.

    PubMed  Article  Google Scholar 

  50. 50.

    Greulich W, Pyle SI. Radiographic atlas of skeletal development of the human hand and wrist. 2nd ed. Stanford: Stanford University Press; 1959.

    Google Scholar 

  51. 51.

    Tanner JM, Whitehouse RH, Marshall WA, Healy MJR, Goldstein H. Assessment of skeletal maturity and prediction of adult height (TW2 method). London: Academic Press; 1975.

    Google Scholar 

  52. 52.

    Schour I, Massler M. The development of the human dentition. J Am Dent Assoc. 1941;28:1153–60.

    Google Scholar 

  53. 53.

    Demirjian A, Goldstein H, Tanner JM. A new system of dental age assessment. Hum Biol. 1973;45:211–27.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge Dr C. Adams (odontology) and Mr P. Webster (imaging) who are members of the Developing Human Research Group but whose areas of expertise did not encroach onto this section of the project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alison L. Brough.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brough, A.L., Rutty, G.N., Black, S. et al. Post-mortem computed tomography and 3D imaging: anthropological applications for juvenile remains. Forensic Sci Med Pathol 8, 270–279 (2012). https://doi.org/10.1007/s12024-012-9344-z

Download citation

Keywords

  • Forensic
  • Anthropology
  • Multi-detector computed-tomography
  • Virtual
  • Imaging