Forensic Science, Medicine, and Pathology

, Volume 7, Issue 3, pp 257–270 | Cite as

Blood stain pattern analysis

  • O. Peschel
  • S. N. KunzEmail author
  • M. A. Rothschild
  • E. Mützel
Continuing Medical Education Review


Bloodstain pattern analysis (BPA) refers to the collection, categorization and interpretation of the shape and distribution of bloodstains connected with a crime. These kinds of stains occur in a considerable proportion of homicide cases. They offer extensive information and are an important part of a functional, medically and scientifically based reconstruction of a crime. The following groups of patterns can essentially be distinguished: dripped and splashed blood, projected blood, impact patterns, cast-off stains, expirated and transferred bloodstains. A highly qualified analysis can help to estimate facts concerning the location, quality and intensity of an external force. A sequence of events may be recognized, and detailed questions connected with the reconstruction of the crime might be answered. In some cases, BPA helps to distinguish between accident, homicide and suicide or to identify bloodstains originating from a perpetrator. BPA is based on systematic training, a visit to the crime scene or alternatively good photographic documentation, and an understanding and knowledge of autopsy findings or statements made by the perpetrator and/or victim. A BPA working group has been established within the German Society of Legal Medicine aiming to put the knowledge and practical applications of this subdiscipline of forensic science on a wider basis.


Bloodstain pattern analysis Homicide Crime scene analysis Crime reconstruction Forensic science 


  1. 1.
    Brinkmann B. Expertisen an biologischen Spuren–Bestandsaufnahme, zukünftige. Trends Z Rechtsmed. 1988;100:39–54.Google Scholar
  2. 2.
    Karger B, Nusse R, Bajanowski T. Backspatter on the firearm and hand in experimental close-range gunshots to the head. Am J Forensic Med Pathol. 2002;23(3):211–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Karger B, Rand SP, Brinkmann B. Experimental bloodstains on fabric from contact and from droplets. Int J Legal Med. 1998;111(1):17–21.PubMedCrossRefGoogle Scholar
  4. 4.
    MacDonell HL. Bloodstain patterns. New York: Laboratory of Forensic Science; 1993.Google Scholar
  5. 5.
    James SH, Kish PE. Sutton TP principles of bloodstain pattern analysis—theory and practice. Boca Raton: CRC Press; 2005.CrossRefGoogle Scholar
  6. 6.
    Bevel T, Gardner RM. Bloodstain pattern analysis. 2nd ed. With an introduction to crime scene reconstruction. Boca Raton: CRC Press; 2002.Google Scholar
  7. 7.
    MacDonell HL. Bloodstain pattern interpretation. New York: Laboratory of Forensic Science Publishers; 1982.Google Scholar
  8. 8.
  9. 9.
    Gardener RM. Directionality in swipe patterns. J Forensic Ident. 2002;52(2):579.Google Scholar
  10. 10.
    Benecke M, Barksdale L. Distinction of bloodstain patterns from fly artefacts. Forensic Sci Int. 2003;137(2–3):152–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Carter AL. The directional analysis of bloodstain patterns—theory and experimental validation. Can Soc Forensic Sci J. 2001;34(4):173–89.Google Scholar
  12. 12.
    Lytle LT, Hedgecock DG. Chemiluminescence in the visualization of forensic bloodstains. J Forensic Sci. 1978;23:550–5.PubMedGoogle Scholar
  13. 13.
    Grodsky M, Wright K, Kirk PL. Simplified preliminary blood testing. An improved technique and a comparative study of methods. J Crimin Law Criminol Police Sci. 1951;42:95–104.CrossRefGoogle Scholar
  14. 14.
    Weber K. Die Anwendung der Chemilumineszenz des Luminols. Z Gerichtl Medizin. 1995;57:410.CrossRefGoogle Scholar
  15. 15.
    Klein A, Feudel E, Türk E, et al. Lumineszenz nach Luminolanwendung. Richtig- oder falsch- positiv? Z Rechtsmedizin. 2007;17:146–52.CrossRefGoogle Scholar
  16. 16.
    Barni F, Lewis SW, Berti A, Miskelly GM, Lago G. Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta. 2007;72:896–913.PubMedCrossRefGoogle Scholar
  17. 17.
    Laux DL. Effects on luminol on the subsequent analysis of bloodstains. J Forensic Sci. 1991;36:1512.PubMedGoogle Scholar
  18. 18.
    Laux DL. The detection of blood using luminol. In: James S, Kish PE, Sutton TP, editors. Principles of bloodstain pattern analysis: theory and practice. Boca Raton: CRC Press; 2005. p. 369–89.Google Scholar
  19. 19.
    Creamer JI, Quickenden TI, Crichton LB, Robertson P, Ruhayel RA. Attempted cleaning of bloodstains and its effect on the forensic luminol test. Luminescence. 2005;20:411–3.PubMedCrossRefGoogle Scholar
  20. 20.
    Wolson TL. Documentation of bloodstain pattern evidence. J Forensic Ident. 1995;45(4):396–408.Google Scholar
  21. 21.
    Illes MR, Carter AL, Laturnus PL, Yamashita AB. Use of the BackTrack™ Computer Program for bloostain pattern analysis of stains from downward-moving drops. Can Soc Forensic Sci. 2005;38(4):213–8.Google Scholar
  22. 22.
    Carter AL, Forsythe-Erman J, Hawkes V, et al. Validation of the BackTrack suite of programs for bloodstain pattern analysis. J Forensic Ident. 2006;56(2):242–54.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • O. Peschel
    • 1
  • S. N. Kunz
    • 1
    Email author
  • M. A. Rothschild
    • 2
  • E. Mützel
    • 1
  1. 1.Institute of Legal MedicineLudwig Maximilians University of MunichMunichGermany
  2. 2.Institute of Legal MedicineUniversity of CologneCologneGermany

Personalised recommendations