Skip to main content
Log in

Current issues in species identification for forensic science and the validity of using the cytochrome oxidase I (COI) gene

  • Technical Report
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

Species identification techniques commonly utilized in Australian Forensic Science laboratories are gel immunodifussion antigen antibody reactions and hair comparison analysis. Both of these techniques have significant limitations and should be considered indicative opinion based tests. The Barcode of Life Initiative aims to sequence a section of DNA (~648 base pairs) for the Cytochrome Oxidase I mitochondrial gene (COI) in all living species on Earth, with the data generated being uploaded to the Barcode of Life Database (BOLD) which can then be used for species identification. The COI gene therefore offers forensics scientists an opportunity to use the marker to analyze unknown samples and compare sequences generated in BOLD. Once sequences from enough species are on the database, it is anticipated that routine identification of an unknown species may be possible. However, most forensic laboratories are not yet suited to this type of analysis and do not have the expertise to fully interpret the implications of matches and non matches involving a poorly sampled taxa (for example where there are cryptic species) and in providing the required opinion evidence. Currently, the use of BOLD is limited by the number of relevant species held in the database and the quality assurance and regulation of sequences that are there. In this paper, the COI methodology and BOLD are tested on a selection of introduced and Australian mammals in a forensic environment as the first step necessary in the implementation of this approach in the Australian context. Our data indicates that the COI methodology performs well on distinct species but needs further exploration when identifying more closely related species. It is evident from our study that changes will be required to implement DNA based wildlife forensics using the BOLD approach for forensic applications and recommendations are made for the future adoption of this technology into forensic laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Keller RP, Lodge DM. Species invasions from commerce in live aquatic organisms problems and possible solutions. Bioscience. 2007;57:428–36.

    Article  Google Scholar 

  2. Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessier AP, Collins JP. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Nat Acad Sci USA. 2006;103:3165–70.

    Article  CAS  PubMed  Google Scholar 

  3. McDowell D. Wildlife crime policy and the law. Canberra: Australian Government Publishing Service; 1997.

    Google Scholar 

  4. Cook D, Roberts M, Lowther J. The international wildlife trade and organised crime: a review of the evidence and the role of the UK. United Kingdom: World Wildlife Fund; 2002.

    Google Scholar 

  5. Wyler LS, Sheikh PA. CRS report for congress—international illegal trade in wildlife: threats and U.S. policy; 2008.

  6. Brack D. The growth and control of international environmental crime. Environ Health Perspect. 2004;112:80–1.

    Article  Google Scholar 

  7. Holden J. By hook or by crook a reference manual on illegal wildlife trade and prosecutions in the United Kingdom. Bedfordshire: The Royal Society for the Protection of Birds; 1998.

  8. Symondson WOC. Molecular identification of prey in predator diets. Mol Ecol. 2002;11:627–41.

    Article  CAS  PubMed  Google Scholar 

  9. Berry O, Sarre SD, Farrington L, Aitken N. Faecal DNA detection of invasive species: the case of feral foxes in Tasmania. Wildl Res. 2007;34(1):1–7.

    Article  Google Scholar 

  10. Berry O, Sarre SD. Gel-free species identification using melt-curve analysis. Mol Ecol Notes. 2007;7(1):1–4.

    Article  CAS  Google Scholar 

  11. Macedo-Silva A, Macedo-Silva SC, Barbosa MGA, Alkmin AJ, Vaz M, Shimokomaki M, Tenuta-Filho A. Hamburger meat identification by dot-ELISA. Meat Sci. 2000;56:189–92.

    Article  CAS  Google Scholar 

  12. Martinex I, Danielsdottir AK. Identification of marine mammal species in food products. J Sci Food Agric. 2000;80(4):527–33.

    Article  Google Scholar 

  13. Wong KL, Wang J, But PPH SPC. Application of cytochrome b DNA sequenes for the authentication of endangered snake species. For Sci Inter. 2004;139:49–55.

    CAS  Google Scholar 

  14. Peppin L, McEwing R, Carvalho GR, Ogden R. A DNA based approach for the forensic identification of Asiatic black bear (Ursus thibetanus) in traditional Asian medicine. J Forensic Sci. 2008;53:1358–62.

    CAS  PubMed  Google Scholar 

  15. Fumière O, Veys P, Boix A, von Holst C, Baeten V, Berben G. Methods of detection, species identification and quantification of processed animal proteins in feedingstuffs. Base. 2009;13:59–70.

    Google Scholar 

  16. Brunner H, Coman BJ. The identification of mammalian hairs. Melbourne: Inkata Press; 1974.

    Google Scholar 

  17. Robertson J, editor. Forensic examination of hair. 2nd ed. London: Taylor & Francis; 1999.

    Google Scholar 

  18. Ouchterlony O. Handbook of immunodiffusion and immunoelectrophoresis. Ann Arbor: Ann Arbor Science Publishers Inc; 1968.

    Google Scholar 

  19. Ouchterlony O, Nilsson LA. Immunodiffusion and immunoelectrophoresis. In: Weir DM, Herzerberg LA, Blackwell C, Herzerberg LA, editors. Handbook of experimental immunology, vol 1. 4th ed. Oxford: Blackwell; 1986. p. 32.1–32.50.

    Google Scholar 

  20. Saferstein R. Identification and grouping of Bloodstains. In: Saferstein R, editor. Forensic science handbook. New Jersey: Prentice Hall Inc; 1982. p. 267–96.

    Google Scholar 

  21. Fugate HG, Penn SR. Immunodiffusion technique for the identification of animal species. J Assoc Off Anal Chem. 1971;54:1152–6.

    PubMed  Google Scholar 

  22. Bird GWG. Paradoxical findings in Ouchterlony tests. Cell Mole Life Sci. 2005;17:408.

    Article  Google Scholar 

  23. Wilson MW, Pringle BH. Cross-reactions in the Ouchterlony plate: analysis of native and halogenated bovine serum albumins. J Immun. 1956;77:324–31.

    PubMed  Google Scholar 

  24. Alacs E, Georges A, Fitzsimmons NN, Robertson J. DNA detective: a review of molecular approaches to wildlife forensics. Forensic Sci Med Path. 2010. doi:10.1007/s12024-009-9131-7.

  25. Ogden R, Dawnay N, McEwing R. Wildlife DNA forensics—bridging the gap between conservation geentics and law enforcement. End Sp Res. 2009. doi:10.3354/esr00144.

  26. DeYoung RW, Honeycutt RL. The molecular toolbox: genetic techniques in wildlife ecology and management. J Wildl Manage. 2005;69:1362–84.

    Article  Google Scholar 

  27. Mallet J. A species definition for the modern synthesis. Tree. 1995;10:294–9.

    Google Scholar 

  28. Harrison RG. Molecular changes at speciation. Annu Rev Ecol Syst. 1991;22:281–308.

    Article  Google Scholar 

  29. Olsen SJ. Origins of the domestic dog: the fossil record. Tucson: The University of Arizona Press; 1985.

    Google Scholar 

  30. Avise JC. Phylogeography: the history and formation of species. Massachusetts: Harvard University Press; 2000.

    Google Scholar 

  31. Parson W, Pegoraro K, Niederstätter H, Föger M, Steinlechner M. Species identification by means of the cytochrome b gene. Int J Legal Med. 2000;114:23–8.

    Article  CAS  PubMed  Google Scholar 

  32. Verma SK, Singh L. Noverl universal primers establish identify of an enormous number of animal species for forensic application. Mol Ecol Notes. 2002;3:28–31.

    Article  Google Scholar 

  33. Bellis C, Ashton KJ, Freney L, Blair B, Griffiths LR. A molecular genetic approach for forensic animal species identification. For Sci Inter. 2203;134:99–108.

    Google Scholar 

  34. Hsieh HM, Haung LH, Tsai LC, Kuo YC, Meng HH, Linacre A, Lee JC. Species identification of rhinoceros horns using the cytochrome b gene. For Sci Inter. 2003;136:1–11.

    CAS  Google Scholar 

  35. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for the amplification of mitochondrial cytochrome c oxidase 1 from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.

    CAS  PubMed  Google Scholar 

  36. Lynch M, Jarrell PE. A method for calibrating molecular clocks and its application to animal mitochondrial DNA. Genetics. 1993;135:1197–208.

    CAS  PubMed  Google Scholar 

  37. Hebert PDN, Cywinska A, Ball SL. Biological identifications through DNA barcodes. Proc R Soc Lond B. 2003;270:313–21.

    Article  CAS  Google Scholar 

  38. Hebert PDN, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B. 2003;270(Suppl):S96–S9.

    Google Scholar 

  39. Blaxter ML. The promise of molecular taxonomy. Phil Trans R Soc B. 2004;359:669–79.

    Article  CAS  PubMed  Google Scholar 

  40. Hebert PD, Stoeckle MY, Zemlak TS, Francis CM. Identification of birds through DNA barcodes. PLoS Biol. 2004;2(10):e312. doi:10.1371/journal.pbio.0020312.

  41. Hanner RH, Schindel DE, Ward RD, Hebert PDN. FISH-BOL workshop report, August 26, 2005. For the workshop held at the University of Guelph, June 5–8, 2005 Ontario Canada 2005 http://www.fishbol.org/news.php.

  42. Budowle B, Garofano P, Hellman A, Ketchum M, Kanthaswamy S, Parson W, van Haeringen W, Fain S, Broad T. Recommendations for animal DNA forensic and identity testing. Int J Legal Med. 2009;119:295–302.

    Article  Google Scholar 

  43. Mallet J, Willmott K. Taxonomy: renaissance or tower of babel? Trends Ecol Evol. 2003;18:57–9.

    Article  Google Scholar 

  44. Moritz C, Cicero C. DNA barcoding: promise and pitfalls. PLoS Biol. 2004;2(10):1529–31. doi:10.1371/journal.pbio.0020354.

  45. Johnson NK, Cicero C. New mitochondrial DNA data affirm the importance of pleistocene speciation in North American birds. Evolution. 2004;58(5):1122–30.

    PubMed  Google Scholar 

  46. Will KW, Rubinoff D. Myth of the molecule: DNA barcodes for species cannot replace morphology or identification and classification. Cladistics. 2004;20:47–55.

    Article  Google Scholar 

  47. Erpenbeck D, Hooper JNA, Worheide G. CO1 phylogenies in diploblasts and the ‘Barcoding of Life’—are we sequencing a suboptimal partition? Mol Ecol Notes. 2006;6:550–3.

    Article  CAS  Google Scholar 

  48. Dawnay N, Ogden R, McEwing R, Carvalho RS. Validation of the barcoding gene COI for use in forensic genetic species identification. Forensic Sci Int. 2007;173(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  49. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  50. Rozen S, Skaletsky HJ. Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S, editors. Bioinformatics methods and protocols: methods in molecular biology. Totowa: Humana Press; 2000. p. 365–86.

    Google Scholar 

  51. Tamura K, Dudley J, Nei M. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–9 (Publication PDF at http://www.kumarlab.net/publications).

  52. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparison studies of nucleotide sequences. J Mol Evol. 1980;16:111–20.

    Article  CAS  PubMed  Google Scholar 

  53. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

    CAS  PubMed  Google Scholar 

  54. Felsenstein J. Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst. 1983;14:313–33.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Australian Federal Police for funding this research. Specimens were donated by the Australian National Wildlife Collection Victoria Police Forensic Services Department and the Victoria Museum. The authors would also like to thank the two anonymous reviewers for their comments and suggestions in the improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linzi Wilson-Wilde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson-Wilde, L., Norman, J., Robertson, J. et al. Current issues in species identification for forensic science and the validity of using the cytochrome oxidase I (COI) gene. Forensic Sci Med Pathol 6, 233–241 (2010). https://doi.org/10.1007/s12024-010-9172-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-010-9172-y

Keywords

Navigation