Skip to main content
Log in

RAS-Mutant Follicular Thyroid Tumors: A Continuous Challenge for Pathologists

  • Review
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

The classification of thyroid nodules, particularly those with a follicular growth pattern, has significantly evolved. These tumors, enriched with RAS or RAS-like mutations, remain challenging for pathologists due to variables such as nuclear atypia, invasion, mitotic activity, and tumor necrosis. This review addresses the histological correlates of benign, low-risk, and malignant RAS-mutant thyroid tumors, as well as some difficult-to-classify follicular nodules with worrisome features. One prototypical RAS-mutant nodule is non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). The assessment of nuclear characteristics in encapsulated/well-demarcated non-invasive RAS-mutant follicular-patterned tumors helps distinguish between follicular thyroid adenoma (FTA) and NIFTP. Despite this straightforward concept, questions about the degree of nuclear atypia necessary for the diagnosis of NIFTP are common in clinical practice. The nomenclature of follicular nodules lacking clear invasive features with increased mitotic activity, tumor necrosis, and/or high-risk mutations (e.g., TERT promoter or TP53) remains debated. Invasion, particularly angioinvasion, is the current hallmark of malignancy in RAS-mutant follicular-patterned neoplasms, with follicular thyroid carcinoma (FTC) as the model. Assessing the tumor interface is critical, though full capsule evaluation can be challenging. Multiple levels and NRASQ61R-specific immunohistochemistry can aid in identifying invasion. Controversies around vascular invasion persist, with ancillary stains like CD31, ERG, and CD61 aiding in its evaluation. Moreover, the review highlights that invasive encapsulated follicular variant papillary thyroid carcinoma (IEFVPTC) is closely associated with FTC, suggesting the need for better nomenclature. The concept of “high-grade” differentiated carcinomas, applicable to FTC or IEFVPTC with necrosis and/or high mitotic activity, is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

Not applicable. This is a review article.

Code Availability

Not applicable.

References

  1. Baloch ZW, Livolsi VA. Follicular-patterned lesions of the thyroid: the bane of the pathologist. Am J Clin Pathol. 2002;117 (1):143-50.

    Article  PubMed  Google Scholar 

  2. Tallini G, Tuttle RM, Ghossein RA. The History of the Follicular Variant of Papillary Thyroid Carcinoma. The Journal of clinical endocrinology and metabolism. 2017;102 (1):15-22.

    Article  PubMed  Google Scholar 

  3. Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nature reviews Molecular cell biology. 2008;9(7):517-31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wood KW, Sarnecki C, Roberts TM, Blenis J. ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK. Cell. 1992;68(6):1041-50.

    Article  CAS  PubMed  Google Scholar 

  5. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature. 1994;370(6490):527-32.

    Article  CAS  PubMed  Google Scholar 

  6. McGrath JP, Capon DJ, Goeddel DV, Levinson AD. Comparative biochemical properties of normal and activated human RAS p21 protein. Nature. 1984;310(5979):644-9.

    Article  CAS  PubMed  Google Scholar 

  7. Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. Specific Pattern of ras Oncogene Mutations in Follicular Thyroid Tumors. The Journal of Clinical Endocrinology & Metabolism. 2003;88(6):2745-52.

    Article  CAS  Google Scholar 

  8. Lemoine NR, Mayall ES, Wyllie FS, Farr CJ, Hughes D, Padua RA, et al. Activated <em>ras</em> Oncogenes in Human Thyroid Cancers. Cancer Research. 1988;48(16):4459-63.

    CAS  PubMed  Google Scholar 

  9. Lemoine N, Mayall E, Wyllie F, Williams ED, Goyns M, Stringer B, et al. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene. 1989;4(2):159-64.

    CAS  PubMed  Google Scholar 

  10. Gire V, Wynford-Thomas D. RAS oncogene activation induces proliferation in normal human thyroid epithelial cells without loss of differentiation. Oncogene. 2000;19:737.

    Article  CAS  PubMed  Google Scholar 

  11. Miller KA, Yeager N, Baker K, Liao XH, Refetoff S, Di Cristofano A. Oncogenic Kras requires simultaneous PI3K signaling to induce ERK activation and transform thyroid epithelial cells in vivo. Cancer Res. 2009;69(8):3689-94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hernandez-Prera JC, Valderrabano P, Creed JH, de la Iglesia JV, Slebos RJC, Centeno BA, et al. Molecular Determinants of Thyroid Nodules with Indeterminate Cytology and RAS Mutations. Thyroid. 2021;31(1):36-49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suarez H, Du Villard J, Caillou Ba, Schlumberger M, Tubiana M, Parmentier C, et al. Detection of activated ras oncogenes in human thyroid carcinomas. Oncogene. 1988;2(4):403.

  14. Esapa CT, Johnson SJ, Kendall-Taylor P, Lennard TW, Harris PE. Prevalence of Ras mutations in thyroid neoplasia. Clin Endocrinol (Oxf). 1999;50(4):529-35.

    Article  CAS  PubMed  Google Scholar 

  15. Gupta N, Dasyam AK, Carty SE, Nikiforova MN, Ohori NP, Armstrong M, et al. RAS mutations in thyroid FNA specimens are highly predictive of predominantly low-risk follicular-pattern cancers. The Journal of clinical endocrinology and metabolism. 2013;98(5):E914-22.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rivera M, Ricarte-Filho J, Knauf J, Shaha A, Tuttle M, Fagin JA, et al. Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod Pathol. 2010;23(9):1191-200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Park JY, Kim WY, Hwang TS, Lee SS, Kim H, Han HS, et al. BRAF and RAS mutations in follicular variants of papillary thyroid carcinoma. Endocr Pathol. 2013;24(2):69-76.

    Article  CAS  PubMed  Google Scholar 

  18. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676-90.

    Article  Google Scholar 

  19. Elsheikh TM, Asa SL, Chan JK, DeLellis RA, Heffess CS, LiVolsi VA, et al. Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. Am J Clin Pathol. 2008;130(5):736-44.

    Article  PubMed  Google Scholar 

  20. Lloyd RV, Erickson LA, Casey MB, Lam KY, Lohse CM, Asa SL, et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol. 2004;28(10):1336-40.

    Article  PubMed  Google Scholar 

  21. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid : official journal of the American Thyroid Association. 2016;26(1):1-133.

    Article  PubMed  Google Scholar 

  22. Cibas ES, Ali SZ. The Bethesda System For Reporting Thyroid Cytopathology. Am J Clin Pathol. 2009;132(5):658-65.

    Article  PubMed  Google Scholar 

  23. Cibas ES, Ali SZ. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid. 2017;27(11):1341-6.

    Article  PubMed  Google Scholar 

  24. Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda System for Reporting Thyroid Cytopathology: a meta-analysis. Acta cytologica. 2012;56(4):333-9.

    Article  PubMed  Google Scholar 

  25. Roth MY, Witt RL, Steward DL. Molecular testing for thyroid nodules: Review and current state. Cancer. 2018;124(5):888-98.

    Article  PubMed  Google Scholar 

  26. Valderrabano P, Khazai L, Leon ME, Thompson ZJ, Ma Z, Chung CH, et al. Evaluation of ThyroSeq v2 performance in thyroid nodules with indeterminate cytology. Endocrine-related cancer. 2017;24(3):127-36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guan H, Toraldo G, Cerda S, Godley FA, Rao SR, McAneny D, et al. Utilities of RAS Mutations in Preoperative Fine Needle Biopsies for Decision Making for Thyroid Nodule Management: Results from a Single-Center Prospective Cohort. Thyroid. 2020;30(4):536-47.

    Article  CAS  PubMed  Google Scholar 

  28. Valderrabano P, Khazai L, Thompson ZJ, Leon ME, Otto KJ, Hallanger-Johnson JE, et al. Impact of oncogene panel results on surgical management of cytologically indeterminate thyroid nodules. Head Neck. 2018;40(8):1812-23.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Medici M, Kwong N, Angell TE, Marqusee E, Kim MI, Frates MC, et al. The variable phenotype and low-risk nature of RAS-positive thyroid nodules. BMC Med. 2015;13:184-.

  30. Steward DL, Carty SE, Sippel RS, Yang SP, Sosa JA, Sipos JA, et al. Performance of a Multigene Genomic Classifier in Thyroid Nodules With Indeterminate Cytology: A Prospective Blinded Multicenter Study. JAMA Oncol. 2019;5(2):204-12.

    Article  PubMed  Google Scholar 

  31. Marcadis AR, Valderrabano P, Ho AS, Tepe J, Swartzwelder CE, Byrd S, et al. Interinstitutional variation in predictive value of the ThyroSeq v2 genomic classifier for cytologically indeterminate thyroid nodules. Surgery. 2019;165(1):17-24.

    Article  PubMed  Google Scholar 

  32. An JH, Song KH, Kim SK, Park KS, Yoo YB, Yang JH, et al. RAS mutations in indeterminate thyroid nodules are predictive of the follicular variant of papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2015;82(5):760-6.

    Article  CAS  PubMed  Google Scholar 

  33. Medici M, Kwong N, Angell TE, Marqusee E, Kim MI, Frates MC, et al. The variable phenotype and low-risk nature of RAS-positive thyroid nodules. BMC Med. 2015;13:184.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nabhan F, Porter K, Lupo MA, Randolph GW, Patel KN, Kloos RT. Heterogeneity in Positive Predictive Value of RAS Mutations in Cytologically Indeterminate Thyroid Nodules. Thyroid. 2018;28(6):729-38.

    Article  CAS  PubMed  Google Scholar 

  35. Goldner WS, Angell TE, McAdoo SL, Babiarz J, Sadow PM, Nabhan FA, et al. Molecular Variants and Their Risks for Malignancy in Cytologically Indeterminate Thyroid Nodules. Thyroid. 2019;29(11):1594-605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu X, Bishop J, Shan Y, Pai S, Liu D, Murugan AK, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocrine-related cancer. 2013;20(4):603-10.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bell RJ, Rube HT, Xavier-Magalhães A, Costa BM, Mancini A, Song JS, et al. Understanding TERT Promoter Mutations: A Common Path to Immortality. Mol Cancer Res. 2016;14(4):315-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nature Reviews Genetics. 2005;6(8):611-22.

    Article  CAS  PubMed  Google Scholar 

  39. Liu R, Xing M. Diagnostic and prognostic TERT promoter mutations in thyroid fine-needle aspiration biopsy. Endocrine-related cancer. 2014;21(5):825-30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120(23):3627-34.

    Article  CAS  PubMed  Google Scholar 

  41. Howell GM, Hodak SP, Yip L. RAS mutations in thyroid cancer. Oncologist. 2013;18(8):926-32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fukahori M, Yoshida A, Hayashi H, Yoshihara M, Matsukuma S, Sakuma Y, et al. The associations between RAS mutations and clinical characteristics in follicular thyroid tumors: new insights from a single center and a large patient cohort. Thyroid. 2012;22(7):683-9.

    Article  CAS  PubMed  Google Scholar 

  43. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW, 2nd, Tallini G, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. The Journal of clinical endocrinology and metabolism. 2003;88(5):2318-26.

    Article  CAS  PubMed  Google Scholar 

  44. Karunamurthy A, Panebianco F, S JH, Vorhauer J, Nikiforova MN, Chiosea S, et al. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocrine-related cancer. 2016;23(4):295–301.

  45. Morariu EM, McCoy KL, Chiosea SI, Nikitski AV, Manroa P, Nikiforova MN, et al. Clinicopathologic Characteristics of Thyroid Nodules Positive for the THADA-IGF2BP3 Fusion on Preoperative Molecular Analysis. Thyroid. 2021;31(8):1212-8.

    Article  CAS  PubMed  Google Scholar 

  46. Bae JS, Jung SH, Hirokawa M, Bychkov A, Miyauchi A, Lee S, et al. High Prevalence of DICER1 Mutations and Low Frequency of Gene Fusions in Pediatric Follicular-Patterned Tumors of the Thyroid. Endocr Pathol. 2021;32(3):336-46.

    Article  CAS  PubMed  Google Scholar 

  47. Bongiovanni M, Sykiotis GP, La Rosa S, Bisig B, Trimech M, Missiaglia E, et al. Macrofollicular Variant of Follicular Thyroid Carcinoma: A Rare Underappreciated Pitfall in the Diagnosis of Thyroid Carcinoma. Thyroid. 2020;30(1):72-80.

    Article  CAS  PubMed  Google Scholar 

  48. Ardito G, Fadda G, Revelli L, Modugno P, Lucci C, Ardito F, et al. Follicular adenoma of the thyroid gland with extensive bone metaplasia. J Exp Clin Cancer Res. 2001;20(3):443-5.

    CAS  PubMed  Google Scholar 

  49. Vergilio J, Baloch ZW, LiVolsi VA. Spindle cell metaplasia of the thyroid arising in association with papillary carcinoma and follicular adenoma. Am J Clin Pathol. 2002;117(2):199-204.

    Article  PubMed  Google Scholar 

  50. Doerfler WR, Nikitski AV, Morariu EM, Ohori NP, Chiosea SI, Landau MS, et al. Molecular alterations in Hürthle cell nodules and preoperative cancer risk. Endocrine-related cancer. 2021;28(5):301-9.

    Article  CAS  PubMed  Google Scholar 

  51. Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD, et al. Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: A Paradigm Shift to Reduce Overtreatment of Indolent Tumors. JAMA Oncol. 2016;2(8):1023-9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Erickson LA, Jin L, Wollan PC, Thompson GB, van Heerden J, Lloyd RV. Expression of p27kip1 and Ki-67 in benign and malignant thyroid tumors. Mod Pathol. 1998;11(2):169-74.

    CAS  PubMed  Google Scholar 

  53. Hellgren LS, Stenman A, Paulsson JO, Höög A, Larsson C, Zedenius J, et al. Prognostic Utility of the Ki-67 Labeling Index in Follicular Thyroid Tumors: a 20-Year Experience from a Tertiary Thyroid Center. Endocr Pathol. 2022;33(2):231-42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. William A. Meissner and Shields Warren. Tumors of the thyroid gland. 1968;45.

  55. Ye L, Zhou X, Huang F, Wang W, Qi Y, Xu H, et al. The genetic landscape of benign thyroid nodules revealed by whole exome and transcriptome sequencing. Nature Communications. 2017;8(1):15533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Apel RL, Ezzat S, Bapat BV, Pan N, LiVolsi VA, Asa SL. Clonality of thyroid nodules in sporadic goiter. Diagn Mol Pathol. 1995;4(2):113-21.

    Article  CAS  PubMed  Google Scholar 

  57. Kopp P, Kimura ET, Aeschimann S, Oestreicher M, Tobler A, Fey MF, et al. Polyclonal and monoclonal thyroid nodules coexist within human multinodular goiters. The Journal of clinical endocrinology and metabolism. 1994;79(1):134-9.

    CAS  PubMed  Google Scholar 

  58. Barletta JA, Mete O, Erickson LA, Kakudo K, Kondo T, Livolsi VA, et al. Thyroid follicular nodular disease. WHO Classification of Tumours Editorial Board Endocrine and neuroendocrine tumours [Internet]. 5th Edition ed. Lyon (France): International Agency for Research on Cancer; 2022.

  59. Paulson VA, Shivdasani P, Angell TE, Cibas ES, Krane JF, Lindeman NI, et al. Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features Accounts for More Than Half of "Carcinomas" Harboring RAS Mutations. Thyroid. 2017;27(4):506-11.

    Article  CAS  PubMed  Google Scholar 

  60. Chu YH, Sadow PM. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): Diagnostic updates and molecular advances. Semin Diagn Pathol. 2020;37(5):213-8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liu J, Singh B, Tallini G, Carlson DL, Katabi N, Shaha A, et al. Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer. 2006;107(6):1255-64.

    Article  PubMed  Google Scholar 

  62. Rivera M, Tuttle RM, Patel S, Shaha A, Shah JP, Ghossein RA. Encapsulated papillary thyroid carcinoma: a clinico-pathologic study of 106 cases with emphasis on its morphologic subtypes (histologic growth pattern). Thyroid. 2009;19(2):119-27.

    Article  PubMed  Google Scholar 

  63. Piana S, Frasoldati A, Di Felice E, Gardini G, Tallini G, Rosai J. Encapsulated well-differentiated follicular-patterned thyroid carcinomas do not play a significant role in the fatality rates from thyroid carcinoma. Am J Surg Pathol. 2010;34(6):868-72.

    Article  PubMed  Google Scholar 

  64. Thompson LD. Ninety-four cases of encapsulated follicular variant of papillary thyroid carcinoma: a name change to noninvasive follicular thyroid neoplasm with papillary-like nuclear features would help prevent overtreatment. Modern Pathology. 2016;29(7):698-707.

    Article  CAS  PubMed  Google Scholar 

  65. Rosario PW, Mourão GF, Nunes MB, Nunes MS, Calsolari MR. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Endocrine-related cancer. 2016;23(12):893-7.

    Article  CAS  PubMed  Google Scholar 

  66. Xu B, Tallini G, Scognamiglio T, Roman BR, Tuttle RM, Ghossein RA. Outcome of large noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Thyroid. 2017;27(4):512-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nikiforov YE, Baloch ZW, Hodak SP, Giordano TJ, Lloyd RV, Seethala RR, et al. Change in Diagnostic Criteria for Noninvasive Follicular Thyroid Neoplasm With Papillarylike Nuclear Features. JAMA Oncol. 2018;4(8):1125-6.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cho U, Mete O, Kim M-H, Bae JS, Jung CK. Molecular correlates and rate of lymph node metastasis of non-invasive follicular thyroid neoplasm with papillary-like nuclear features and invasive follicular variant papillary thyroid carcinoma: the impact of rigid criteria to distinguish non-invasive follicular thyroid neoplasm with papillary-like nuclear features. Modern Pathology. 2017;30(6):810-25.

    Article  CAS  PubMed  Google Scholar 

  69. Kim MJ, Won JK, Jung KC, Kim JH, Cho SW, Park DJ, et al. Clinical Characteristics of Subtypes of Follicular Variant Papillary Thyroid Carcinoma. Thyroid. 2018;28(3):311-8.

    Article  CAS  PubMed  Google Scholar 

  70. Lee SE, Hwang TS, Choi YL, Kim WY, Han HS, Lim SD, et al. Molecular Profiling of Papillary Thyroid Carcinoma in Korea with a High Prevalence of BRAF(V600E) Mutation. Thyroid. 2017;27(6):802-10.

    Article  CAS  PubMed  Google Scholar 

  71. Xu B, Serrette R, Tuttle RM, Alzumaili B, Ganly I, Katabi N, et al. How Many Papillae in Conventional Papillary Carcinoma? A Clinical Evidence-Based Pathology Study of 235 Unifocal Encapsulated Papillary Thyroid Carcinomas, with Emphasis on the Diagnosis of Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features. Thyroid. 2019;29(12):1792-803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Seethala RR, Baloch ZW, Barletta JA, Khanafshar E, Mete O, Sadow PM, et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: a review for pathologists. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2018;31(1):39–55.

  73. Chen DW, Rob FI, Mukherjee R, Giordano TJ, Haymart MR, Banerjee M. Variation in the Diagnosis of Noninvasive Follicular Thyroid Neoplasm with Papillary-like Nuclear Features. The Journal of clinical endocrinology and metabolism. 2022;107(10):e4072-e7.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rana C, Bychkov A. NIFTP Statistics-Now You See It, Now You Don't. The Journal of clinical endocrinology and metabolism. 2022;108(1):e5-e6.

    Article  PubMed  Google Scholar 

  75. Thompson LDR, Poller DN, Kakudo K, Burchette R, Nikiforov YE, Seethala RR. An International Interobserver Variability Reporting of the Nuclear Scoring Criteria to Diagnose Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features: a Validation Study. Endocr Pathol. 2018;29(3):242-9.

    Article  PubMed  Google Scholar 

  76. Liu Z, Bychkov A, Jung CK, Hirokawa M, Sui S, Hong S, et al. Interobserver and intraobserver variation in the morphological evaluation of noninvasive follicular thyroid neoplasm with papillary-like nuclear features in Asian practice. Pathol Int. 2019;69(4):202-10.

    Article  CAS  PubMed  Google Scholar 

  77. Vanzati A, Mercalli F, Rosai J. The “Sprinkling” Sign in the Follicular Variant of Papillary Thyroid Carcinoma: A Clue to the Recognition of This Entity. Archives of Pathology & Laboratory Medicine. 2013;137(12):1707-9.

    Article  Google Scholar 

  78. Vickery ALJ. Thyroid papillary carcinoma: Pathological and philosophical controversies. The American Journal of Surgical Pathology. 1983;7(8):797-807.

    Article  PubMed  Google Scholar 

  79. Ghossein R, Kakudo K, Sadow P, Bongiovanni M, Jung C, Katoh R. Non-invasive follicular thyroid neoplasm with papillary-like nuclear features. WHO Classification of Tumours Editorial Board Endocrine and neuroendocrine tumours [Internet]. WHO classification of tumours series, 5th ed.; vol. 10. Lyon (France): International Agency for Research on Cancer; 2022.

  80. Barletta J, Fadda G, Kakudo K, Kondo T, LiVolsi V, Asa S, et al. Follicular thyroid carcinoma. WHO Classification of Tumours Editorial Board Endocrine and neuroendocrine tumours [Internet]. WHO classification of tumours series, 5th ed.; vol. 10. Lyon (France): International Agency for Research on Cancer; 2022.

  81. Saliba M, Katabi N, Dogan S, Xu B, Ghossein RA. NRAS Q61R immunohistochemical staining in thyroid pathology: sensitivity, specificity and utility. Histopathology. 2021;79(4):650-60.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Oishi N, Kondo T, Vuong HG, Nakazawa T, Mochizuki K, Kasai K, et al. Immunohistochemical detection of NRAS(Q61R) protein in follicular-patterned thyroid tumors. Hum Pathol. 2016;53:51-7.

    Article  CAS  PubMed  Google Scholar 

  83. Crescenzi A, Fulciniti F, Bongiovanni M, Giovanella L, Trimboli P. Detecting N-RAS Q61R Mutated Thyroid Neoplasias by Immunohistochemistry. Endocr Pathol. 2017;28(1):71-4.

    Article  CAS  PubMed  Google Scholar 

  84. Kim M, Jeon S, Jung CK. Preoperative Risk Stratification of Follicular-patterned Thyroid Lesions on Core Needle Biopsy by Histologic Subtyping and RAS Variant-specific Immunohistochemistry. Endocrine Pathology. 2023;34(2):247-56.

    Article  CAS  PubMed  Google Scholar 

  85. Johnson DN, Sadow PM. Exploration of BRAFV600E as a diagnostic adjuvant in the non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). Hum Pathol. 2018;82:32-8.

    Article  CAS  PubMed  Google Scholar 

  86. Jiang XS, Harrison GP, Datto MB. Young Investigator Challenge: Molecular testing in noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Cancer Cytopathol. 2016;124(12):893-900.

    Article  CAS  PubMed  Google Scholar 

  87. Xu B, Viswanathan K, Zhang L, Edmund LN, Ganly O, Tuttle RM, et al. The solid variant of papillary thyroid carcinoma: a multi-institutional retrospective study. Histopathology. 2022;81(2):171-82.

    Article  PubMed  Google Scholar 

  88. Williams ED. Guest Editorial: Two Proposals Regarding the Terminology of Thyroid Tumors. Int J Surg Pathol. 2000;8(3):181-3.

    Article  PubMed  Google Scholar 

  89. Baser H, Topaloglu O, Tam AA, Alkan A, Kilicarslan A, Ersoy R, et al. Comparing Clinicopathologic and Radiographic Findings Between TT-UMP, Classical, and Non-Encapsulated Follicular Variants of Papillary Thyroid Carcinomas. Endocr Pathol. 2016;27(3):233-42.

    Article  CAS  PubMed  Google Scholar 

  90. Rivera M, Ricarte-Filho J, Patel S, Tuttle M, Shaha A, Shah JP, et al. Encapsulated thyroid tumors of follicular cell origin with high grade features (high mitotic rate/tumor necrosis): a clinicopathologic and molecular study. Hum Pathol. 2010;41(2):172-80.

    Article  CAS  PubMed  Google Scholar 

  91. Bongiovanni M, Mazzucchelli L, Giovanella L, Frattini M, Pusztaszeri M. Well-differentiated follicular patterned tumors of the thyroid with high-grade features can metastasize in the absence of capsular or vascular invasion: report of a case. Int J Surg Pathol. 2014;22(8):749-56.

    Article  PubMed  Google Scholar 

  92. Thompson LDR. High Grade Differentiated Follicular Cell-Derived Thyroid Carcinoma Versus Poorly Differentiated Thyroid Carcinoma: A Clinicopathologic Analysis of 41 Cases. Endocr Pathol. 2023;34(2):234-46.

    Article  CAS  PubMed  Google Scholar 

  93. Tallini G, LiVolsi V, Bongiovanni M, Jung C, Katoh R. Thyroid tumours of uncertain malignant potential. WHO Classification of Tumours Editorial Board Endocrine and neuroendocrine tumours [Internet]. WHO classification of tumours series, 5th ed.; vol. 10. Lyon (France) International Agency for Research on Cancer; 2022.

  94. Guerrero D, Valderrabano P, Tarasova V, McIver B, Wenig B, Hernandez-Prera J, editors. Clinical Significance of TERT Promoter and TP53 Mutations in Thyroid Nodules with Indeterminate Cytology. LABORATORY INVESTIGATION; 2020: NATURE PUBLISHING GROUP 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013–1917 USA.

  95. Topf MC, Wang ZX, Tuluc M, Pribitkin EA. TERT, HRAS, and EIF1AX Mutations in a Patient with Follicular Adenoma. Thyroid. 2018;28(6):815-7.

    Article  CAS  PubMed  Google Scholar 

  96. Wang N, Liu T, Sofiadis A, Juhlin CC, Zedenius J, Höög A, et al. TERT promoter mutation as an early genetic event activating telomerase in follicular thyroid adenoma (FTA) and atypical FTA. Cancer. 2014;120(19):2965-79.

    Article  CAS  PubMed  Google Scholar 

  97. Sobrinho-Simões M, Eloy C, Magalhães J, Lobo C, Amaro T. Follicular thyroid carcinoma. Mod Pathol. 2011;24 Suppl 2:S10-8.

    Article  PubMed  Google Scholar 

  98. Cracolici V, Kadri S, Ritterhouse LL, Segal JP, Wanjari P, Cipriani NA. Clinicopathologic and Molecular Features of Metastatic Follicular Thyroid Carcinoma in Patients Presenting With a Thyroid Nodule Versus a Distant Metastasis. Am J Surg Pathol. 2019;43(4):514-22.

    Article  PubMed  Google Scholar 

  99. Oh HS, Kim SJ, Song E, Lee YM, Sung TY, Kim WG, et al. Modified Transverse-Vertical Gross Examination: a Better Method for the Detection of Definite Capsular Invasion in Encapsulated Follicular-Patterned Thyroid Neoplasms. Endocr Pathol. 2019;30(2):106-12.

    Article  PubMed  Google Scholar 

  100. van Heerden JA, Hay ID, Goellner JR, Salomao D, Ebersold JR, Bergstralh EJ, et al. Follicular thyroid carcinoma with capsular invasion alone: a nonthreatening malignancy. Surgery. 1992;112(6):1130–6; discussion 6–8.

  101. Mete O, Asa SL. Pathological definition and clinical significance of vascular invasion in thyroid carcinomas of follicular epithelial derivation. Mod Pathol. 2011;24(12):1545-52.

    Article  PubMed  Google Scholar 

  102. Mete O, Asa S, Baloch Z, Erickson L, Ezzat S, Rotstein L, et al. Protocol for the examination of specimens from patients with carcinomas of the thyroid gland. College of American Pathologists. 2023 Version: 4.4.0.0

  103. Cracolici V, Parilla M, Henriksen KJ, Cipriani NA. An Evaluation of CD61 Immunohistochemistry in Identification of Vascular Invasion in Follicular Thyroid Neoplasms. Head Neck Pathol. 2020;14(2):399-405.

    Article  PubMed  Google Scholar 

  104. Asa SL, Erickson LA, Mete O. The Next Steps for Endocrine Pathology. Endocr Pathol. 2022;33(1):228-30.

    Article  PubMed  Google Scholar 

  105. O'Neill CJ, Vaughan L, Learoyd DL, Sidhu SB, Delbridge LW, Sywak MS. Management of follicular thyroid carcinoma should be individualised based on degree of capsular and vascular invasion. Eur J Surg Oncol. 2011;37(2):181-5.

    Article  CAS  PubMed  Google Scholar 

  106. Network NCC. Thyroid Cancer (Version 2.2024) [Available from: https://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf.

  107. Lang W, Choritz H, Hundeshagen H. Risk factors in follicular thyroid carcinomas. A retrospective follow-up study covering a 14-year period with emphasis on morphological findings. Am J Surg Pathol. 1986;10(4):246–55.

  108. Xu B, Wang L, Tuttle RM, Ganly I, Ghossein R. Prognostic impact of extent of vascular invasion in low-grade encapsulated follicular cell-derived thyroid carcinomas: a clinicopathologic study of 276 cases. Hum Pathol. 2015;46(12):1789-98.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Yamazaki H, Katoh R, Sugino K, Matsuzu K, Masaki C, Akaishi J, et al. Encapsulated Angioinvasive Follicular Thyroid Carcinoma: Prognostic Impact of the Extent of Vascular Invasion. Ann Surg Oncol. 2022.

  110. Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol. 2022;33(1):27-63.

    Article  PubMed  Google Scholar 

  111. Tallini G, Lam A, Kondo T, Piana S, Asa S, Barletta J. High-grade follicular cell-derived non-anaplastic thyroid carcinoma. WHO Classification of Tumours Editorial Board Endocrine and neuroendocrine tumours [Internet]. WHO classification of tumours series, 5th ed.; vol. 10. Lyon (France): International Agency for Research on Cancer; 2022.

  112. Stojanov IJ, Mete O, Asa SL. Obstacles to Tumor Capsule Assessment in Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features (NIFTP). Endocr Pathol. 2023;34(4):484-6.

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and writing: JHP and BMW. Revisions: JHP and BMW. JHP and BMW have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Juan C. Hernandez-Prera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

Not applicable. This is a review article except for IRB approval.

Consent for Publication

JHP and BMW have read and agreed to the published version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors' note:

This work was partially presented at the Companion Meeting of the Endocrine Pathology Society during the Annual Meeting of the United States and Canadian Academy of Pathology on March 12, 2023, in New Orleans.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez-Prera, J.C., Wenig, B.M. RAS-Mutant Follicular Thyroid Tumors: A Continuous Challenge for Pathologists. Endocr Pathol (2024). https://doi.org/10.1007/s12022-024-09812-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12022-024-09812-5

Keywords

Navigation