Identification of Recurrent TERT Promoter Mutations in Intrathyroid Thymic Carcinomas


Intrathyroid thymic carcinoma (ITTC) is a rare malignant neoplasm considered to be a eutopic thymic carcinoma (TC) arising ectopically in the thyroid. Histopathologically, ITTC resembles squamous cell carcinoma of the thymus with positive TC markers such as CD5 and c-KIT. Despite these similar histological findings, ITTC is clinically less aggressive than TC. In this study, we compared clinical, histological, and genetic characteristics of ITTCs and TCs. We collected 9 ITTCs and 8 TCs with their clinicopathological profiles. Immunohistochemistry for CD5, p63, CD117/c-KIT, Ki-67, p53, TTF-1, thyroglobulin, PAX8, EGFR, and PD-L1/CD274 plus in situ hybridization for EBER was performed. We further investigated mutation status of KIT, EGFR, BRAF, and TERT promoter using Sanger sequencing. In our study, ITTCs affected significantly younger patients than TCs. After a mean follow-up of 86 months, all patients with ITTC were alive, while two patients with TC had died. Immunohistochemistry showed ITTCs and TCs had a similar immunophenotype except for EGFR and p53. Genetic analysis did not identify KIT or BRAF mutations in any ITTCs or TCs. EGFR mutations were positive in 11% (1/9) of ITTCs and 25% (2/8) of TCs. Notably, TERT promoter C228T mutation was identified in 22% (2/9) of ITTCs but none of the TCs. There were no significant differences in age, tumor size, or sex between TERT-mutated and TERT-wild-type ITTCs. Collectively, ITTC and TC have similar histopathologic and immunophenotypic features but different clinical outcomes. Recurrent TERT promoter mutation may be a key event related to cancer progression in ITTCs and warrants further investigation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability

All data generated or analyzed during this study are included in this article and its supplementary information files.


  1. 1.

    Dong W, Zhang P, Li J, et al (2018) Outcome of Thyroid Carcinoma Showing Thymus-Like Differentiation in Patients Undergoing Radical Resection. World J Surg 42:1754–1761.

    Article  PubMed  Google Scholar 

  2. 2.

    Miyauchi A, Kuma K, Matsuzuka F, et al (1985) Intrathyroidal epithelial thymoma: An entity distinct from squamous cell carcinoma of the thyroid. World J Surg 9:128–134.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Chan JKC RJ (1991) Tumors of the neck showing thymic or related branchial pouch differentiation: a unifying concept. Hum Pathol 22:349–367.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Lloyd RV, Osamura RY, Klöppel G RJ (eds) (2017) World Health Organization Classification of Tumours of Endocrine Organs (4th). IARC, Lyon

    Google Scholar 

  5. 5.

    Berezowski K, Grimes MM, Gal A, Kornstein MJ (1996) CD5 immunoreactivity of epithelial cells in thymic carcinoma and CASTLE using paraffin-embedded tissue. Am J Clin Pathol 106:483–486.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Dorfman, Shahsafaei, Miyauchi (1998) Intrathyroidal epithelial thymoma (ITET)/carcinoma showing thymus-like differentiation (CASTLE) exhibits CD5 immunoreactivity: new evidence for thymic differentiation. Histopathology 32:104–109.

  7. 7.

    Roka S, Kornek G, Schüller J, et al (2004) Carcinoma showing thymic-like elements - A rare malignancy of the thyroid gland. Br J Surg 91:142–145.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Cappelli C, Tironi A, Marchetti G Pietro, et al (2008) Aggressive thyroid carcinoma showing thymic-like differentiation (CASTLE): case report and review of the literature. Endocr J 55:685–90.

    Article  PubMed  Google Scholar 

  9. 9.

    Veits L, Mechtersheimer G, Steger C, et al (2011) Chromosomal imbalances in carcinoma showing thymus-like elements (CASTLE). Virchows Arch 459:221–226.

    Article  PubMed  Google Scholar 

  10. 10.

    Hirokawa M, Miyauchi A, Minato H, et al (2013) Intrathyroidal epithelial thymoma/carcinoma showing thymus-like differentiation; comparison with thymic lymphoepithelioma-like carcinoma and a possibility of development from a multipotential stem cell. Apmis 121:523–530.

    Article  PubMed  Google Scholar 

  11. 11.

    Huang C, Wang L, Wang Y, et al (2013) Carcinoma showing thymus-like differentiation of the thyroid (CASTLE). Pathol Res Pract 209:662–665.

    Article  PubMed  Google Scholar 

  12. 12.

    Zhu L, Zhang J, Marx A, et al (2016) Clinicopathological analysis of 241 thymic epithelial tumors-Experience in the Shanghai Chest Hospital from 1997-2004. J Thorac Dis 8:718–726.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Ito Y, Miyauchi A, Nakamura Y, et al (2007) Clinicopathologic significance of intrathyroidal epithelial thymoma/carcinoma showing thymus-like differentiation: A collaborative study with member Institutes of the Japanese Society of Thyroid Surgery. Am J Clin Pathol 127:230–236.

    Article  PubMed  Google Scholar 

  14. 14.

    Yoh K, Nishiwaki Y, Ishii G, et al (2008) Mutational status of EGFR and KIT in thymoma and thymic carcinoma. Lung Cancer 62:316–320.

    Article  PubMed  Google Scholar 

  15. 15.

    Weissferdt A, Lin H, Woods D, et al (2012) HER family receptor and ligand status in thymic carcinoma. Lung Cancer 77:515–521.

    Article  PubMed  Google Scholar 

  16. 16.

    Weissferdt A, Wistuba II, Moran CA (2012) Molecular aspects of thymic carcinoma. Lung Cancer 78:127–132.

    Article  PubMed  Google Scholar 

  17. 17.

    Hagemann IS, Govindan R, Javidan-Nejad C, et al (2014) Stabilization of Disease after Targeted Therapy in a Thymic Carcinoma with KIT Mutation Detected by Clinical Next-Generation Sequencing. J Thorac Oncol 9:e12–e16.

    Article  PubMed  Google Scholar 

  18. 18.

    Shitara M, Okuda K, Suzuki A, et al (2014) Genetic profiling of thymic carcinoma using targeted next-generation sequencing. Lung Cancer 86:174–179.

    Article  PubMed  Google Scholar 

  19. 19.

    Saito M, Fujiwara Y, Asao T, et al (2017) The genomic and epigenomic landscape in thymic carcinoma. Carcinogenesis 38:1084–1091.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Radovich M, Pickering CR, Felau I, et al (2018) The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 33:244-258.e10.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Yuan X, Larsson C, Xu D (2019) Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene.

  22. 22.

    Huang DS, Wang Z, He XJ, et al (2015) Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer 51:969–976.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Veits L, Schupfner R, Hufnagel P, et al (2014) KRAS, EGFR, PDGFR-α, KIT and COX-2 status in carcinoma showing thymus-like elements (CASTLE). Disgnostic Pathol 9:.

  24. 24.

    Rajeshwari M, Singh V, Nambirajan A, et al (2018) Carcinoma showing thymus like elements: report of a case with EGFR T790M mutation. Diagn Cytopathol 46:413–418.

    Article  PubMed  Google Scholar 

  25. 25.

    Travis, W.D., Brambilla, E., Burke, A.P., Marx, A., Nicholson AG (eds) (2015) World Health Organization Classification of Tumors of the Lung, Pleura, Thymus, and Heart (4th). IARC, Lyon

    Google Scholar 

  26. 26.

    Kakudo K, Bai Y, Ozaki T, et al (2013) Intrathyroid epithelial thymoma (ITET) and carcinoma showing thymus-like differentiation (CASTLE). CD5-positive neoplasms mimicking squamous cell carcinoma of the thyroid. Histol Histopathol 28:543–556.

    Article  PubMed  Google Scholar 

  27. 27.

    Moreira AL, Won HH, Mcmillan R, et al (2015) Massively parallel sequencing identifies recurrent mutations in TP53 in thymic carcinoma associated with poor prognosis. J Thorac Oncol 10:373–380.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Katsuya Y, Fujita Y, Horinouchi H, et al (2015) Immunohistochemical status of PD-L1 in thymoma and thymic carcinoma. Lung Cancer 88:154–159.

    Article  PubMed  Google Scholar 

  29. 29.

    Oishi N, Kondo T, Mochizuki K, et al (2014) Localized Langerhans cell histiocytosis of the thymus with BRAF V600E mutation: A case report with immunohistochemical and genetic analyses. Hum Pathol 45:1302–1305.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Yano M, Sasaki H, Yokoyama T, et al (2008) Thymic carcinoma: 30 Cases at a single institution. J Thorac Oncol 3:265–269.

    Article  PubMed  Google Scholar 

  31. 31.

    Buti S, Donini M, Sergio P, Garagnani L, Schirosi L, Passalacqua R RG (2011) Impressive response with imatinib in a heavily pretreated patient with metastatic c-KIT mutated thymic carcinoma. JClinOncol 29:803–805.

    Article  Google Scholar 

  32. 32.

    Weksler B, Dhupar R, Parikh V, et al (2013) Thymic carcinoma: A multivariate analysis of factors predictive of survival in 290 patients. Ann Thorac Surg 95:299–303.

    Article  PubMed  Google Scholar 

  33. 33.

    Ruffini E, Detterbeck F, van Raemdonck D, et al (2014) Thymic carcinoma: A cohort study of patients from the European society of thoracic surgeons database. J Thorac Oncol 9:541–548.

    Article  PubMed  Google Scholar 

  34. 34.

    Gao R, Jia X, Ji T, et al (2018) Management and Prognostic Factors for Thyroid Carcinoma Showing Thymus-Like Elements (CASTLE): A Case Series Study. Front Oncol 8:1–9.

    Article  Google Scholar 

  35. 35.

    Litvak AM, , Kaitlin Woo, Sara Hayes, James Huang, Andreas Rimner, Camelia S Sima, Andre L Moreira, Maria Tsukazan GJR (2014) Clinical Characteristics and Outcomes for Patients With Thymic Carcinoma: Evaluation of Masaoka Staging. J Thorac Oncol 9:1810–1815.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Wang YF, Liu B, Fan XS, et al (2015) Thyroid carcinoma showing thymus-like elements: A clinicopathologic, immunohistochemical, ultrastructural, and molecular analysis. Am J Clin Pathol 143:223–233.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Penzel R, Sers C, Chen Y, et al (2011) EGFR mutation detection in NSCLC-assessment of diagnostic application and recommendations of the German Panel for Mutation Testing in NSCLC. Virchows Arch 458:95–98.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Ito T, Matoba R, Maekawa H, et al (2019) Detection of gene mutations in gastric cancer tissues using a commercial sequencing panel. Mol Clin Oncol 11:455–460.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Murray S, Timotheadou E, Linardou H, et al (2006) Mutations of the epidermal growth factor receptor tyrosine kinase domain and associations with clinicopathological features in non-small cell lung cancer patients. Lung Cancer 52:225–233.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Diah A Douglas, Hong Zhong, Jae Y Ro, Carole Oddoux, Aaron D Berger, Matthew R Pincus, Jaya M Satagopan, William L Gerald, Howard I Scher, Peng Lee IO (2006) Novel Mutations of Epidermal Growth Factor Receptor in Localized Prostate Cancer. Front Biosci 11:2518–2525.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Heidenreich B, Kumar R (2017) TERT promoter mutations in telomere biology. Mutat Res - Rev Mutat Res 771:15–31.

    CAS  Article  Google Scholar 

  42. 42.

    Xiaoli Liu, Justin Bishop, Yuan Shan, Sara Pai DL (2013) Higyly prevalent TERT promotor mutations in aggressive thyoid cancers. Endocr Relat Cancer 20:603–610.

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Oishi N, Kondo T, Ebina A, et al (2017) Molecular alterations of coexisting thyroid papillary carcinoma and anaplastic carcinoma: Identification of TERT mutation as an independent risk factor for transformation. Mod Pathol 30:1527–1537.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Hysek M, Paulsson JO, Jatta K, et al (2019) Clinical routine tert promoter mutational screening of follicular thyroid tumors of uncertain malignant potential (Ft-umps): A useful predictor of metastatic disease. Cancers (Basel) 11:1–10.

    CAS  Article  Google Scholar 

  45. 45.

    Censi S, Barollo S, Grespan E, et al (2019) Prognostic significance of TERT promoter and BRAF mutations in TIR-4 and TIR-5 thyroid cytology. Eur J Endocrinol 181:1–11.

    CAS  Article  PubMed  Google Scholar 

Download references


We wish to thank Pam Zaber of Editdoc English Editing for her help with English editing of this article. We appreciate Ms. Wakaba Iha, Mr. Yoshihito Koshimizu, and Ms. Kayoko Kono for their technical assistance.

Code Availability

Not applicable.

Author information



Corresponding author

Correspondence to Tetsuo Kondo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

This study was conducted under the approval of the Institutional Ethical Review Board of University of Yamanashi (approval code: 1723).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material


(DOCX 16 kb)


(DOCX 15 kb)


(DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tahara, I., Oishi, N., Mochizuki, K. et al. Identification of Recurrent TERT Promoter Mutations in Intrathyroid Thymic Carcinomas. Endocr Pathol 31, 274–282 (2020).

Download citation


  • Intrathyroid thymic carcinoma (ITTC)
  • Thymic carcinoma (TC)
  • c-KIT
  • EGFR
  • TERT promoter mutation