Skip to main content

Advertisement

Log in

Hereditary Parathyroid Disease: Sometimes Pathologists Do Not Know What They Are Missing

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Parathyroid gland excision specimens are common and sometimes underestimated cases that many surgical pathologists encounter regularly. In the vast majority of cases, these will be spot diagnoses of sporadic primary parathyroid adenomas or, perhaps, hyperplasias commonly in the setting of renal failure. However, a small but significant number of parathyroid gland excisions may be due to heritable disease. In most cases, hereditary disease is suspected by the referring clinicians. Nevertheless, a subset of these are undetected which is significant, particularly in the setting of the multiple endocrine neoplasia (MEN), and the hyperparathyroidism jaw tumour (HPT-JT) syndromes. There have been recent advances in recognition of the morphological and immunohistochemical characteristics of these tumours and hyperplasias. While hereditary kindreds are over-represented at specialist referral centres, with awareness of the characteristic clinical and morphological features, the general surgical pathologist is frequently able to suggest the possibility of hereditary parathyroid disease. We therefore provide a succinct guide for pathologists to increase the recognition of hereditary parathyroid disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lloyd RV, Osamura RY, Klöppel G, Rosai J. WHO classification of endocrine organs. Lyon IARC Press, 2017.

    Google Scholar 

  2. DeLellis R, Mangray S. (2018) Heritable forms of Hyperparathyroidism: a current perspective. Histopathology 72, 117-132.

    PubMed  Google Scholar 

  3. Marx SJ, Simonds WF, Agarwal SK et al. (2002) Hyperparathyroidism in hereditary syndromes: special expressions and special managements. J. Bone Miner. Res.17(Suppl. 2); N37–N43.2.

    CAS  PubMed  Google Scholar 

  4. Gill A, Lim G, Cheung VKY et al. (2019) Parafibromin deficient (HPT-JT Type, CDC73 mutated) parathyroid tumors demonstrate distinctive morphologic features. Am J Surg Pathol 43(1); 35-46

    PubMed  Google Scholar 

  5. Manoharan J, Bollmann C, Kann PH, Di Fazio P, Bartsch DK, Albers M.B. (2020) Gender Differences in Multiple Endocrine Neoplasia Type 1: Implications for Screening? Visc Med. Feb;36(1):3-9.

    Google Scholar 

  6. T. Lassen, L. Friis-Hansen, Å. K. Rasmussen, U. Knigge, U. Feldt-Rasmussen. (2014) Primary Hyperparathyroidism in Young People. When Should We Perform Genetic Testing for Multiple Endocrine Neoplasia 1 (MEN-1)?, The Journal of Clinical Endocrinology & Metabolism 99(11): 3983–3987

    CAS  Google Scholar 

  7. Marini F, Falchetti A, Del Monte F, et al. (2006) Multiple endocrine neoplasia type 1. Orphanet J Rare Dis. 1:38.

    PubMed  PubMed Central  Google Scholar 

  8. del Pozo, C, García-Pascual, L, Balsells, M et al. (2011) Parathyroid carcinoma in multiple endocrine neoplasia type 1. Case report and review of the literature. Hormones 10, 326–331.

    PubMed  Google Scholar 

  9. Duan K, Gomez Hernandez K, Mete O. (2015) Clinicopathological correlates of hyperparathyroidism. Journal of Clinical Pathology 68:771-787.

    CAS  PubMed  Google Scholar 

  10. McDonnell J, Gild M, Clifton-Bligh R, Robinson B. (2019) Multiple endocrine neoplasia: An update. Internal medicine journal. 49(8), 954-961.

    PubMed  Google Scholar 

  11. DeLellis R. (2011) Parathyroid tumours and related disorders. Modern Pathology 24, S78-S93.

    CAS  PubMed  Google Scholar 

  12. Thakker RV. (2016) Genetics of parathyroid tumours. J. Int. Med. 280; 574–583.

    CAS  Google Scholar 

  13. Thakker RV. (2014) Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol. Cell. Endocrinol. 386;2–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Marx S, Spiegel AM, Skarulis MC, Doppman JL, Collins FS, Liotta LA. (1998) Multiple endocrine neoplasia type 1: clinical and genetic topics. Ann. Intern. Med. 129; 484–494.

    CAS  PubMed  Google Scholar 

  15. Thakker RV. (2010) Multiple endocrine neoplasia type 1(MEN1). Best Pract. Res. Clin. Endocrinol. Metab. 24; 355–370.

    CAS  PubMed  Google Scholar 

  16. Gill AJ, Clarkson A, Gimm O, et al. (2006) Loss of nuclear expression of parafibromin distinguishes parathyroid carcinomas and hyperparathyroidism-jaw tumor (HPT-JT) syndrome related adenomas from sporadic parathyroid adenomas and hyperplasias. Am J Surg Pathol. 30:1140–1149.

    PubMed  Google Scholar 

  17. Gill AJ. (2014) Understanding the genetic basis of parathyroid carcinoma. Endocr Pathol. 25:30–34.

    CAS  PubMed  Google Scholar 

  18. Kruijff S, Sidhu SB, Sywak MS, Gill AJ, Delbridge LW (2014) Negative parafibromin staining predicts malignant behavior in atypical parathyroid adenomas. Ann Surg Oncol. Feb;21(2):426-33

    Google Scholar 

  19. Howell VM, Gill A, Clarkson A, et al. (2009) Accuracy of combined Protein Gene Product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma. J Clin Endocrinol Metab. 94:434–41.

    CAS  PubMed  Google Scholar 

  20. Yu W, McPherson JR, Stevenson M, et al. (2015) Whole-exome sequencing studies of parathyroid carcinomas reveal novel PRUNE2 mutations, distinctive mutational spectra related to APOBEC-catalyzed DNA mutagenesis and mutational enrichment in kinases associated with cell migration and invasion. J Clin Endocrinol Metab. 100:E360–E364.

    CAS  PubMed  Google Scholar 

  21. Howell VM, Haven CJ, Kahnoski K, et al. (2003) HRPT2mutations are associated with malignancy in sporadic parathyroid tumours. J Med Genet. 40:657–663.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shattuck T, Stiina V, Obara T, et al. (2003) Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. N Engl J Med. 349:1722–1729.

    CAS  PubMed  Google Scholar 

  23. Cetani F, Pardi E, Borsari S, et al. (2004) Genetic analyses of HRPT2 gene in primary hyperparathyroidism: germline and somatic mutations in familial and sporadic parathyroid tumours. J Clin Endocinol Metab. 89:5583–5591.

    CAS  Google Scholar 

  24. Krebs L, Shattuck TM, Arnold A. (2005) HRPT mutation analysis of typical sporadic parathyroid adenomas. J Clin Endocinol Metab. 90:5015–5017.

    CAS  Google Scholar 

  25. Iacobone M, Masi G, Barzon L et al. (2009) Hyperparathyroidism-jaw tumour syndrome: a report of three large kindred. Langenbecks Arch. Surg. 394; 817–825.

    PubMed  Google Scholar 

  26. Haven CJ, Wong FK, vanDam EW et al. (2000) A genotypic and histopathologic study of a large Dutch kindred with hyper-parathyroidism-jaw tumour syndrome. J. Clin. Endocrinol. Metab. 85; 1449–1454

    CAS  PubMed  Google Scholar 

  27. van der Tuin K, Tops CMJ, Adank MA, et al. (2017) CDC73-related disorders: clinical manifestations and case detection in primary hyperparathyroidism. JClinEndocrinol Metab. 102:4534–4454.

    Google Scholar 

  28. Bradley KJ, Hobbs MR, Buley RB et al. (2005) Uterine tumours are a phenotypic manifestation of the hyperparathyroid. J Intern Med. Jan;257(1):18-26

    CAS  Google Scholar 

  29. Mehta A, Patel D, Rosenberg A, et al. (2014) Hyperparathyroidism-jaw tumor syndrome: results of operative management. Surgery. 156:1315–1324.

    PubMed  PubMed Central  Google Scholar 

  30. Silveira LG, Dias EP, Marinho BC, et al. (2008) HRPT2-related familial isolated hyperparathyroidism: could molecular studies direct the surgical approach? Arq Bras Endocrinol Metabol. 52:1211–1220.

    PubMed  Google Scholar 

  31. Mangray S, Delellis RA. (2007) Parafibromin in the diagnosis of parathyroid carcinoma. Adv Anatomic Pathol. 14:299–301.

    Google Scholar 

  32. Quinn CE, Healy J, Lebastchi AH, et al. (2015) Modern experience with aggressive parathyroid tumors in a high-volume. New England referral center. J Am Coll Surg. 220:1054–1062.

    PubMed  Google Scholar 

  33. Delellis RA. (2008) Challenging lesions in the differential diagnosis of endocrine tumors: parathyroid carcinoma. Endocr Pathol. 19: 221–225.

    CAS  PubMed  Google Scholar 

  34. Masi G, Iacobone M, Sinigaglia A, Mantelli B, Pennelli G, Castagliuolo I, et al. (2014) Characterization of a New CDC73 Missense Mutation that Impairs Parafibromin Expression and Nucleolar Localization. PLoS ONE 9(5): e97994

    PubMed  PubMed Central  Google Scholar 

  35. Juhlin, C.C., Haglund, F., Obara, T. et al. (2011) Absence of nucleolar parafibromin immunoreactivity in subsets of parathyroid malignant tumours. Virchows Arch 459, 47–53.

    CAS  PubMed  Google Scholar 

  36. Iacobone M, Carnaille B, Palazzo FF, et al. (2015) Hereditary hyper-parathyroidism—a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbecks Arch Surg. 400:867–886.

    PubMed  Google Scholar 

  37. Koikawa K, Okada Y, Mori H, Kawaguchi M, Uchino S, Tanaka Y. (2018) Hyperparathyroidism-jaw Tumor Syndrome Confirmed by Preoperative Genetic Testing. Intern Med. 57(6):841–844.

    PubMed  Google Scholar 

  38. Marx SJ, Fraser D, Rapoport A. (1985) Familial hypocalciuric hypercalcemia: mild expression of the gene in heterozygotes and severe expression in homozygotes. Am. J. Med. 78;15–22.

    CAS  PubMed  Google Scholar 

  39. Vargas-Poussou R, Mansour-Hendili L, Baron S et al. (2016) Familial hypocalciuric hypercalcemia types 1 and 3 and primary hyperparathyroidism: similarities and differences. J. Clin. Endocrinol. Metab. 101; 2185–2195.

    CAS  PubMed  Google Scholar 

  40. Hannan F, Babinsky VN, Thakker RV. (2016) Disorders of the calcium sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis. J. Mol. Endocrinol. 57; R127–R142.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gunn IR, Gaffney D. (2004) Clinical and laboratory features of calcium-sensing receptor disorders: a systematic review. Ann. Clin. Biochem. 41; 441–458.

    CAS  PubMed  Google Scholar 

  42. Hendy, GN, Canaff, L, Newfield, RS, Tripto-Shkolnik, L, Wong, BY, Lee, BS, Cole, DE. (2014) Codon Arg15 mutations of the AP2S1 gene: common occurrence in familial hypocalciuric hypercalcemia cases negative for calcium-sensing receptor (CASR) mutations. Journal of Clinical Endocrinology and Metabolism. 9(9)E1311–E1315.

    Google Scholar 

  43. Nesbit MA, Hannan FM, Howles SA et al. (2013a) Mutations affecting G-protein alpha 11 in hypercalcemia and hypocalcemia. N. Engl. J. Med. 368; 2476–2486.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Eller-Vainicher C, Falchetti A. (2018) Management of familial hyperparathyroidism syndromes: MEN1, MEN2, MEN4, HPT-Jaw tumour, Familial isolated hyperparathyroidism, FHH, and neonatal severe hyperparathyroidism. Best Pract Res Clin Endocrinol Metab. Dec;32(6):861-875.

    Google Scholar 

  45. Shinall, Myrick C, Dahir, K. M., Broome, J. T., (2013). Differentiating familial hypocalciuric hypercalcaemia from primary hyperparathyroidism. Endocrine Practice, 19(4), 697-702

    PubMed  Google Scholar 

  46. Falchetti A. (2018) Genetics of parathyroids disorders: Overview. Best Practice & Research Clinical Endocrinology & Metabolism 32(6), 781-790

    Google Scholar 

  47. Nesbit MA, Hannan FM, Howles SA et al. (2013b) Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3. Nat. Genet. 45;93–99.

    CAS  PubMed  Google Scholar 

  48. Mayr, B., Schnabel, D., Dörr, H., & Schöfl, C. (2016) GENETICS IN ENDOCRINOLOGY: Gain and loss of function mutations of the calcium-sensing receptor and associated proteins: current treatment concepts. European Journal of Endocrinology, 174(5), R189-R208.

    CAS  PubMed  Google Scholar 

  49. Reh CM, Hendy GN, Cole DE, Jeandron DD. (2011) Neonatal hyper-parathyroidism with a heterozygous calcium-sensing receptor (CASR) R185Q mutation: clinical benefit from cinacalcet. J. Clin. Endocrinol. Metab. 96; E707–E712.

    CAS  PubMed  Google Scholar 

  50. Marx, S., Sinaii, N. (2020) Neonatal Severe Hyperparathyroidism: Novel Insights From Calcium, PTH, and the CASR Gene. The Journal of Clinical Endocrinology & Metabolism. 105(4);1061-1 078.

    Google Scholar 

  51. Wilkinson S, Young M, Shepherd JJ (1996) The prevalence of MEN-1 in Tasmania. Aust NZ J Surg. 66(3) 141-3.

    CAS  Google Scholar 

  52. eviQ Cancer Treatments Online CIN. (2013) Genetic Testing for Heritable Mutations in the Multiple Endocrine Neoplasia (MEN) 1 Gene. [updated 2018 Oct 18], accessed 20th February, 2020.

  53. Prentice L, Muller HK, Burgess JR (2016) Parathyroid morphology and staining in Multiple Endocrine Neoplasia-1 (MEN1). Pathology. 48(S1), 80.

    Google Scholar 

  54. Christakis I, Busaidy NL, Cote GJ et al. (2016) Parathyroid carcinomas and atypical parathyroid neoplasms in MEN1 patients; a clinic–pathologic challenge. The MD Anderson case series and review of the literature. Int. J. Surg. 31;10–16.

    PubMed  Google Scholar 

  55. Davenport C., Agha A. (2009) The Role of Menin in Parathyroid Tumorigenesis. In: Balogh K., Patocs A. (eds) SuperMEN1. Advances in Experimental Medicine and Biology, vol 668. Springer, New York

    Google Scholar 

  56. Bhuiyan, M., Sato, M., Murao, K., Imachi, H., Namihira, H., Takahara, J. (2007) Expression of Menin in Parathyroid Tumors, The Journal of Clinical Endocrinology & Metabolism, 85(7): 2615–2619

    Google Scholar 

  57. Grolmusz VK, Borka K, Kovesdi A et al. (2017) MEN1 mutations and potentially MEN1-targeting miRNAs are responsible for menin deficiency in sporadic and MEN1 syndrome-associated primary hyperparathyroidism. Virchows Arch 471(3) 401-411.

    CAS  PubMed  Google Scholar 

  58. Agarwal SK, Kester MB, Debelenko LV et al. (1997) Germline mutations of the MEN1 gene in multiple endocrine neoplasia type 1 and related states. Hum. Mol. Genet. 6; 1169–1175.

    CAS  PubMed  Google Scholar 

  59. Chandrasekharappa SC, Guru SC, Manickam P et al. (1997) Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 27; 404–407.

    Google Scholar 

  60. Falchetti A. (2017) Genetics of multiple endocrine neoplasia type 1 syndrome: what’s new and what’s old. F1000Research 24(6) Faculty Rev-73.

  61. Corbo, V., Dalai, I., Scardoni, M., et al (2010). MEN1 in pancreatic endocrine tumors: analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases, Endocrine-Related Cancer, 17(3), 771-783.

    CAS  PubMed  Google Scholar 

  62. Guerin, C, Romanet P, Taieb D, et al. (2018) Looking Beyond the Thyroid: Advances in the Understanding of Pheochromocytoma and Hyperparathyroidism Phenotypes in MEN2 and of Non-MEN2 Familial Forms. Endocrine-related cancer 25(2): T15–T28.

    CAS  PubMed  Google Scholar 

  63. Machens, A, Elwerr M, Lorenz K, et al. (2020) 100-Year Evolution of Precision Medicine and Surgery for Multiple Endocrine Neoplasia Type 2A. Endocrine doi: https://doi.org/10.1007/s12020-020-02232-5.

  64. Donis-Keller H, Dou S, Chi D et al. (1993) Mutations in the RET protooncogene are associated with MEN2A and FMTC Hum. Mol. Genet. 2; 851–856.

    CAS  PubMed  Google Scholar 

  65. Mulligan LM, Kwok JB, Healey CS et al. (1993) Germline mutations of the RET protooncogene in multiple endocrine neoplasia type 2A. Nature 363; 458–460.

    CAS  PubMed  Google Scholar 

  66. Carlson KM, Dou S, Chi D et al. (1994) Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc. Natl Acad. Sci. USA 91; 1579–1583.

    CAS  PubMed  Google Scholar 

  67. Eng C, Clayton D, Schuffenecker I et al. (1996) The relationships between specific RET protooncogene mutations and disease phenotype in multiple endocrine neoplasia 2. International RET Mutation Consortium analysis. JAMA 276; 1575–1579.

    CAS  PubMed  Google Scholar 

  68. Taïeb, D, Kebebew, E, Castinetti, F, et al. (2014) Diagnosis and Preoperative Imaging of Multiple Endocrine Neoplasia Type 2: Current Status and Future Directions. Clinical Endocrinology 81(3): 317–328.

    PubMed  Google Scholar 

  69. Frank-Raue K, Rybicki LA, Erlic C et al. (2011) Risk profiles and prevalence estimations in multiple endocrine neoplasia type 2A caused by germline RET mutations located in exon 10. Hum. Mutat. 32;51–58.

    CAS  PubMed  Google Scholar 

  70. Machens A, Dralle H. (2016) Variability in penetrance of multiple endocrine neoplasia 2A with amino acid substitutions in RET codon 634. Clin. Endocrinol. 84; 210–215.

    CAS  Google Scholar 

  71. Wells SA, Asa SL, Dralle H et al. (2015) Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 25; 567–609.

    PubMed  PubMed Central  Google Scholar 

  72. Jenkins PJ, Satta MA, Simmgen M et al. (1997) Metastatic parathyroid carcinoma in the MEN2A syndrome. Clin. Endocrinol. 47; 747–751.

    CAS  Google Scholar 

  73. Khan A, Tischler AS, Patwardhan NA, DeLellis RA. (2003) Calcitonin immunoreactivity in neoplastic and hyperplastic parathyroid glands: an immunohistochemical study. Endocrinol. Pathol. 14; 249–255.

    CAS  Google Scholar 

  74. Pellegata NS, Quintanilla-Martinez L, Siggelkow H et al. (2006) Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc. Natl Acad. Sci. USA 103; 15558–15563.

    CAS  PubMed  Google Scholar 

  75. Lee M, Pellegata NS. (2013a) Multiple endocrine neoplasia syndromes associated with mutation of p27. J. Endocrinol. Invest. 36; 781–787.

    CAS  PubMed  Google Scholar 

  76. Elston MS, Meyer-Rochow GY, Dray M, Swarbick M, Conaglen JV. (2015) Early onset primary hyperparathyroidism associated with a novel germline mutation in CDKN1B. Case Rep. Endocrinol. 2015; 510985.

    PubMed  PubMed Central  Google Scholar 

  77. Pardi E, Mariotti S, Pellegata NS et al. (2015) Functional characterization of a CDKN1B mutation in a Sardinian kindred with multiple endocrine neoplasia type 4 (MEN4). Endocr. Connect. 4;1–8.

    PubMed  Google Scholar 

  78. Tonelli F, Giudici F, Giusti F et al. (2014) A heterozygous frameshift mutation in exon 1 of CDKN1B in a patient affected by MEN4 syndrome. Eur. J. Endocrinol. 171;K7–K17.

    CAS  PubMed  Google Scholar 

  79. Molatore S, Pellegata NS. (2010) The MENX syndrome and p27: relationship with multiple endocrine neoplasia. Progr. Brain Res. 182; 295–320.

    CAS  Google Scholar 

  80. Marinoni I, Pellegata NS. (2011) p27kip1: a new multiple endocrine neoplasia gene? Neuroendocrinology 93;19–28.

    CAS  PubMed  Google Scholar 

  81. Frederiksen, V, Rossing, M, Hermann, P, et al. (2019) Clinical Features of Multiple Endocrine Neoplasia Type 4: Novel Pathogenic Variant and Review of Published Cases. The Journal of Clinical Endocrinology & Metabolism 104(9):3637–3646.

    Google Scholar 

  82. Schernthaner-Reiter MH, Trivellin G, Stratakis CA. (2016) MEN1, MEN4, and Carney Complex: Pathology and Molecular Genetics. Neuroendocrinology. 103(1):18–31.

    CAS  PubMed  Google Scholar 

  83. Lee M, Pellegata NS. (2013b) Multiple endocrine neoplasia type 4. Front Horm Res. 41:63-78.

    CAS  PubMed  Google Scholar 

  84. Alrezk R Hannah-Shmouni F, Stratakis CA. (2017) MEN4 and CDKN1B mutations: The latest of the MEN syndromes. Endocrine related cancer. 24(10):195-208

    Google Scholar 

  85. Borsari S, Pardi E, Pellengata NS, et al. (2017) Loss of p27 expression is associated with MEN1 gene mutations in sporadic parathyroid adenomas. Endocrine. 55(2);386-397

    CAS  PubMed  Google Scholar 

  86. Simonds WF, James-Newton LA, Agarwal SK et al. (2002) Familial isolated hyperparathyroidism. Clinical and genetic characteristics of 36 kindreds. Medicine (Baltimore) 81;1–26.

    Google Scholar 

  87. Warner J, Epstein M, Sweet A et al. (2004) Genetic testing in familial isolated hyperparathyroidism: unexpected results and their implications. J. Med. Genet. 41; 155–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Guan B, Welch JM, Sapp J et al. (2016) GCM2-Activating mutations in familial isolated hyperparathyroidism. Am. J. Hum. Genet. 99; 1034–1044.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Turchini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turchini, J., Gill, A.J. Hereditary Parathyroid Disease: Sometimes Pathologists Do Not Know What They Are Missing. Endocr Pathol 31, 218–230 (2020). https://doi.org/10.1007/s12022-020-09631-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-020-09631-4

Keywords

Navigation