Skip to main content

Advertisement

Log in

Long Non-coding RNA Expression in Anaplastic Thyroid Carcinomas

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) participate in transcription and in epigenetic or post-transcriptional regulation of gene expression. They also have roles in epithelial to mesenchymal transition and in carcinogenesis. Because lncRNAs may also have a role in thyroid cancer progression, we examined a group of thyroid tumors which included papillary thyroid carcinomas and anaplastic thyroid carcinomas to determine the specific lncRNAs that were upregulated during thyroid tumor progression. An RT2 Profiler PCR Array Human Cancer Pathway Finder consisting of 84 lncRNAs (Qiagen) and fresh tissues of normal thyroid, PTCs, and ATCs with gene expression profiling was used to determine genes upregulated and downregulated in ATCs. Two of the most highly upregulated genes, prostate cancer antigen 3 (PCA3) and HOX antisense intergenic RNA myeloid 1 (HOTAIRM1 or HAM-1), were selected for further studies using a thyroid tissue microarray(TMA) with formalin-fixed paraffin-embedded tissues of normal thyroid (NT, n = 10), nodular goiters (NG, n = 10), follicular adenoma (FA, n = 32), follicular carcinoma (FCA, n = 28), papillary thyroid carcinoma (PTC, n = 28), follicular variant of papillary thyroid carcinoma (FVPTC, n = 28), and anaplastic thyroid carcinoma (ATC, n = 10). TMA sections were analyzed by in situ hybridization (ISH) using RNAscope technology. The results of ISH analyses were imaged with Vectra imaging technology and quantified with Nuance® and inForm® software. The TMA analysis was validated by qRT-PCR using FFPE tissues for RNA preparation. Cultured thyroid carcinoma cell lines (n = 7) were also used to analyze for lncRNAs by qRT-PCR. The results showed 11 lncRNAs upregulated and 7 downregulated lncRNAs more than twofold in the ATCS compared with PTCs. Two of the upregulated lncRNAs, PCA3 and HAM-1, were analyzed on a thyroid carcinoma TMA. There was increased expression of both lncRNAs in ATCs and PTCs compared with NT after TMA analysis. qRT-PCR analyses showed increased expression of both lncRNAs in ATCs compared with NT and PTCs. Analyses of these lncRNAs from cultured thyroid carcinoma cell lines by qRT-PCR showed the highest levels of lncRNA expression in ATCs. TGF-β treatment of cultured PTC and ATC cells for 21 days led to increased expression of PCA3 lncRNA in both cell lines by day 14. These results show that the lncRNAs PCA3 and HAM-1 are upregulated during thyroid tumor development and progression and may function as oncogenes during tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lloyd RV, Osamura RY, Kloppel G, Rosai J. WHO Classification of Tumours of Endocrine Organs, 4th Edition, International Agency for Research on Cancer (IARC) Lyon, France, 2017.

    Google Scholar 

  2. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–580.

    Article  CAS  Google Scholar 

  3. Livoisi VA. Papillary thyroid carcinoma: An update. Mod Pathol. 2011 ;24(Suppl 2):S1–S9.

    Article  Google Scholar 

  4. Li X, Wu Z, Fu X, Han W. Long noncoding RNAs: Insights from biological features and functions to diseases. Med Res Rev. 2013;33(3):517–553.

    Article  Google Scholar 

  5. Zhang R, Hardin H, Chen J, Guo Z, Lloyd RV. Non-coding RNAs in Thyroid Cancer Endocr Pathol. 2016;27 :12–20.

    Article  Google Scholar 

  6. Sui F, Ji M, Hou P. Long non-coding RNAs in thyroid cancer: Biological functions and clinical significance. Molecular and Cellular Endocrine. 2018, 469:11–22..

    Article  CAS  Google Scholar 

  7. He H, Nagy R, Liyanarachchi S, Jiao H, Li W, Suster S, Kere J, de la Chapelle A. A susceptibility locus for papillary thyroid carcinoma on chormosome 8q24. Cancer Res. 2009;69:625–631.

    Article  CAS  Google Scholar 

  8. He H, Li W, Liyanarachchi S, Jendrzejewski J, Srinivas M, Davuluri RV, Nagy R, de la Chapelle A. Genetic predisposition to papillary thryoid carcinoma: Involvement of FOXE1, TSHR, and a Novel lincRNA Gene, PTCSC2. J Clin Endocrinol Metab. 2015;100:E164–E172.

    Article  CAS  Google Scholar 

  9. Jendrzejewski J, He H, Randomska HS, Li W, Tomsic J, Liyanarachchi S, Davuluri RV, Nagy R, de la Chapelle A. The polymorphism rs944289 predisposes to papillary thryoid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc Natl Acad Sci USA. 2012;109:8646–8651.

    Article  CAS  Google Scholar 

  10. Zhang R, Hardin H, Huang W, Chen J, Asioli S, Righi A, Maletta F, Sapino A, Lloyd RV. MALAT1 Long non-coding RNA expression in thyroid tissues: Analysis by in situ hybridizastion and real-time PCR. Endocr Pathology 2017 ;28:7–12,

    Article  CAS  Google Scholar 

  11. Zhou Q, Chen J, Feng J, Wang J Long noncoding RNA PVT` modulates thyroid cancer cell proliferation by recruiting EZH2 and regulating thyroid stimulating hormone receptor (TSHR) Tumor Biol 2016;37:3105–3113.

    Article  CAS  Google Scholar 

  12. Wang Y, Hou Z. Li D, Long noncoding RNA UCA1 promotes anaplastic thyroid cancer cell proliferation via miR-135a-mediated cmyc activation. Mol Med Rep 2018;18:3068–3076.

  13. Samimi H, Haghpanah V, Irani S, Arefian E, Sohi AN, Fallah P, Soleiman M. Transcript-levelregulation of MALAT1-mediated cell cycle and apoptosis genes using dual MEK/Aurora kinase inhibitor “BI-847325” on anaplastic thyroid carcinoma. Daru M 2019 ,doi.https://doi.org/10.1007/s40199-018-0231-3, 27, 1, 7,.

    Article  Google Scholar 

  14. Buehler D, Hardin H, Shan W, Montemayor-Garcia C, Rush PS, Asioli S, Chen H, Lloyd RV. Expression of epithelial-mesenchymal transition regulators SNAI2 and TWIST1 in thyroid carcinomas. Mod Pathol. 2012; 26:54–61.

    Article  Google Scholar 

  15. Guo Z, Hardin H, Montemayor-Garcia C, Asioli S, Righi A, Maletta F, Sapino A, Lloyd RV. In situ hybridization analysis of miR-146b-5p and miR-21 in thyroid nodules: Diagnostic implications. Endocr Pathol. 2015; 26:157–163.

    Article  CAS  Google Scholar 

  16. Zhang R, Hardin H, Huang W, Buehler D, Lloyd RV. Long Non-coding RNA Linc-ROR is upregulated in papillary thyroid carcinoma. Endocr Pathol 29:1–8, 2018.

    Article  Google Scholar 

  17. Yu Q, Hardin H, Chu YH, Rehrauer W, Lloyd RV. Parathyroid neoplasms: Immunohistochemical characterization and long noncoding RNA (lncRNA) expression. Endocrine Path 2019; 30: 96–105.

    Article  CAS  Google Scholar 

  18. Hardin H, Guo Z, Shan W, Montemayor-Garcia C, Asioli S, Yu XM, Harrison AD, Chen H, Lloyd RV. The roles of the epithelial-mesenchymal transition marker PRRX1 and miR-146b-5p in papillary thyroid carcinoma progression. Am J Pathol. 2014; 184:2342–2354.

    Article  CAS  Google Scholar 

  19. Hardin H, Yu X-M, Harrison AD, Larrain C, Zhang R, Chen J, Chen H, Lloyd RV. Generation of novel thyroid cancer stem-like cell clones effects of resveratrol and valproic acid. Am J Pathol. 2016; 186:1662–1673.

    Article  CAS  Google Scholar 

  20. Di W, Li Q, Shen W, Guo H, Zhao S. The long non-coding RNA HOTAIR promotes thyroid cancer cell growth, invasion and migration through the miR-1-CCND2 axis. Am J Cancer Res. 2017; 7: 1298–1309.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Walsh AL, Tuzova AV Bolton EM, Lynch TH, Perry AS. Long noncoding RNAs and prostate carcinogenesis: the missing ‘line’? Trends Mol Med. 2014; 20:428–436.

    Article  CAS  Google Scholar 

  22. Wang Y, Liu XJ, Yao XD. Function of PCA3 in prostate tissue and clinical research progress on developing a PCA3 score. Chin J Cancer Res. 2014; 26:493–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Clinical prospects of long noncoding RNAs as novel biomarkers and therapeutic targets in prostate cancer. Prostate Cancer Prostatic Dis. 2016; 19:14–20.

  24. Liu Y Zong ZH, Guan X, Wang LL, Zhao Y. The role of long non-coding RNA PCA3 in epithelial ovarian carcinoma tumorigenesis and progression. Gene. 2017; 63342–47.

  25. Saijadi E, Atashi A, Taijrishi MAMH, Saei Z. Gene expression analysis of noncoding PCA3 gene in patients with chronic myeloid leukemia. J Cancer Res Ther. 2018; 14:1079–1082.

    Article  Google Scholar 

  26. Luo Y, He Y, Ye X, Song J, Wang Q, Li Y, Xie X. High expression of long noncoding RNA HOTAIRM1 is associated with the proliferation and migration in pancreatic ductal adenocarcinoma. Pathol Oncol Res. 2019. doi:https://doi.org/10.1007/s12253-018-00570-4

    Article  CAS  Google Scholar 

  27. Zhang X, Weissman SM, Newburger PE. Long intergeneic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol. 2014; 11:777–787.

    Article  CAS  Google Scholar 

  28. Li Q, Dong C, Cui J, Wang Y, Hong X. Over-expressed IncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in gioblastoma multiforme. J Exp Clin Cancer Res. 2018; 37:265.

    Article  CAS  Google Scholar 

  29. Wan L, Kong J, Tang J, Wu Y, Xu E, Lai M, Zhang H. HOTAIRM1 as a potential biomarker for diagnosis of colorectal cancer functions the role in the tumour suppressor. J Cell Mol Med. 2016; 20:L2036–L2044.

    Article  Google Scholar 

  30. Pang EJ, Yang R, Fu XB, Liu YF. 2015. Overexpression of long non-coding RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biol 36:2403–2407.

    Article  CAS  Google Scholar 

  31. Kim J, Piao HL, Kim BJ, Yao F, Han Z, Wang Y, Xiao Z, Siverly AN, Lawhon SE, Ton BN, Lee H, Zhou Z, Gan B, Nakagawa S, Ellis MJ, Liang H, Hung MC, You MJ, Sun Y, Ma L 2018. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet 50:1705–1715.

    Article  CAS  Google Scholar 

  32. Cancer Genome Atlas Research Network. Integrated genomic characterizatin of papillary thyroid carcinoma. Cell. 2014;159:676–690.

    Article  Google Scholar 

  33. .Landa I., Ibrahimpasic T., Boucai L., Sinha R., Knauf J.A., Shah R.H., Dogan S., Ricarte-Filho J.C., Krishnamoorthy G.P., Xu B., Schultz N., Berger M.F., Sander C., Taylor B.S., Ghossein R., Ganly I., Fagin J.A., 2016. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thryoid cancers. J Clin. Invest. 2016,126, 1052–1066.

    Article  Google Scholar 

  34. Todaro M. Lovino F, Eterno V, Cammaren P, Gambara G, Espinma V, Gu, Lotta G, Dieli F. S. Giordano, De Maria R, Stassi G. Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Res. 2010;70:8874–8885.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We kindly thank Dr. John A. Copland III (Mayo Clinic, Jacksonville, FL) for the THJ-16T cell line, Dr. Rebecca E. Schweppe (University of Colorado, Denver, CO) for the BCPAP cell line, Dr. Daniel T. Ruan (Brigham and Women’s Hospital, Boston, MA) for the TPC-1 cell line, and the staff of the Translational Research Initiatives in Pathology (TRIP) Laboratory for technical assistance.

Funding

Dr. Y. Wang received a research grant from the Department of Pathology and Laboratory Medicine at the University of Wisconsin School of Medicine and Public Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo V. Lloyd.

Ethics declarations

The study received ethical approval from the local Institutional Review Board.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hardin, H., Chu, YH. et al. Long Non-coding RNA Expression in Anaplastic Thyroid Carcinomas. Endocr Pathol 30, 262–269 (2019). https://doi.org/10.1007/s12022-019-09589-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-019-09589-y

Keywords

Navigation