Skip to main content

RNA-Seq Analysis of Islets to Characterise the Dedifferentiation in Type 2 Diabetes Model Mice db/db

Abstract

Type 2 diabetes (T2D) is a global health issue and dedifferentiation plays underlying causes in the pathophysiology of T2D; however, there is a lack of understanding in the mechanism. Dedifferentiation results from the loss of function of pancreatic β-cells alongside a reduction in essential transcription factors under various physiological stressors. Our study aimed to establish db/db as an animal model for dedifferentiation by using RNA sequencing to compare the gene expression profile in islets isolated from wild-type, db/+ and db/db mice, and qPCR was performed to validate those significant genes. A reduction in both insulin secretion and the expression of Ins1, Ins2, Glut2, Pdx1 and MafA was indicative of dedifferentiation in db/db islets. A comparison of the db/+ and the wild-type islets indicated a reduction in insulin secretion perhaps related to the decreased Mt1. A significant reduction in both Rn45s and Mir6236 was identified in db/+ compared to wild-type islets, which may be indicative of pre-diabetic state. A further significant reduction in RasGRF1, Igf1R and Htt was also identified in dedifferentiated db/db islets. Molecular characterisation of the db/db islets was performed via Ingenuity analysis which identified highly significant genes that may represent new molecular markers of dedifferentiation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

MIN6:

Mouse insulinoma 6

Vdr:

Vitamin D receptor

Ins1:

Insulin 1

Ins2:

Insulin 2

Glut2:

Glucose transporter 2

Pdx1:

Pancreatic and duodenal homebox1

Pax6:

Paired Box 6

Gcg:

Glucagon

Gck:

Glucokinase

MafA:

V-Maf avian musculoaponeurotic fibrosarcoma oncogene homologue

βCD:

β-cell dedifferentiation

T2D:

Type 2 diabetes

−/− mice:

Wild-type mice

db/− mice:

Heterozygous mice

db/db mice:

Homozygous mice

Gc:

Vitamin D binding protein

Aldh1a3:

Aldehyde dehydrogenase

Serpina7:

Thyroxin-binding globulin

Mir6263:

MicroRNA 6236

Irs1:

Insulin receptor substrate 1

Slc2a2:

Solute carrier family 2 (facilitated glucose transporter)

Stat6:

Signal transducer and activator of transcription

Ffar:

Free fatty acid receptor

Igf1r:

Insulin-like growth factor 1 receptor

Prkab2:

Protein kinase AMP-activated non-catalytic beta-2

Trib:

Tribbles

Npas4:

Neuronal PAS domain protein 4

Rasgrf1:

Ras protein-specific guanine nucleotide releasing factor 1

Htt:

Huntington gene

Pparg:

Peroxisome proliferator-activated receptor

Fosl1:

Fos-like antigen 1

Gipr:

Gastric inhibitory polypeptide receptor

Nr4a1:

Nuclear receptor subfamily 4

Pclo:

Piccolo

Ptrf:

Cavin1

Ucn3:

Urocortin III

Slc2a2:

Protein phosphatase 1

papss2:

Prime phosphoadenosine 5 prime phosphosulfate synthase 2

Gnas:

Gnas complex locus

Ero1b:

Endoplasmic reticulum oxidorectin 1-like beta

References

  1. 1.

    Matthews, D.R., et al., UKPDS 26: Sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet Med, 1998. 15(4): p. 297–303.

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Neelankal John, A., G. Morahan, and F.X. Jiang, Incomplete re-expression of neuroendocrine progenitor/stem cell markers is a key feature of beta-cell dedifferentiation. J Neuroendocrinol, 2017. 29(1). https://doi.org/10.1111/jne.12450.

  3. 3.

    Venardos, K., et al., The PKD inhibitor CID755673 enhances cardiac function in diabetic db/db mice. PLoS One, 2015. 10(3): p. e0120934.

  4. 4.

    Belke, D.D. and D.L. Severson, Diabetes in mice with monogenic obesity: the db/db mouse and its use in the study of cardiac consequences. Methods Mol Biol, 2012. 933: p. 47–57.

    PubMed  CAS  Google Scholar 

  5. 5.

    Harris, R.B., et al., Metabolic responses to leptin in obese db/db mice are strain dependent. Am J Physiol Regul Integr Comp Physiol, 2001. 281(1): p. R115–R132.

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Kobayashi, K., et al., The db/db mouse, a model for diabetic dyslipidemia: molecular characterization and effects of Western diet feeding. Metabolism, 2000. 49(1): p. 22–31.

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Sticco, S.L., Post-intubation croup. CRNA, 1995. 6(3): p. 143–144.

    PubMed  CAS  Google Scholar 

  8. 8.

    Bogdanov, P., et al., The db/db mouse: a useful model for the study of diabetic retinal neurodegeneration. PLoS One, 2014. 9(5): p. e97302.

  9. 9.

    Zhao, G., et al., Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: a model for the study of chronic wounds. Wound Repair Regen, 2010. 18(5): p. 467–477.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Greer, J.J., D.P. Ware, and D.J. Lefer, Myocardial infarction and heart failure in the db/db diabetic mouse. Am J Physiol Heart Circ Physiol, 2006. 290(1): p. H146–H153.

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Garris, B.L., et al., Hypophyseal lipoapoptosis: diabetes (db/db) mutation-associated cytolipidemia promotes pituitary cellular disruption and dysfunction. Pituitary, 2004. 7(1): p. 5–14.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Garris, D.R., Diabetes (db/db) mutation-induced endometrial epithelial lipoapoptosis: ultrastructural and cytochemical analysis of reproductive tract atrophy. Reprod Biol Endocrinol, 2005. 3: p. 15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Talchai, C., et al., Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell, 2012. 150(6): p. 1223–1234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Patti, M.E., P. Li, and A.B. Goldfine, Insulin response to oral stimuli and glucose effectiveness increased in neuroglycopenia following gastric bypass. Obesity (Silver Spring), 2015. 23(4): p. 798–807.

    Article  CAS  Google Scholar 

  15. 15.

    Mueckler, M. and B. Thorens, The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med, 2013. 34(2–3): p. 121–138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Neelankal John, A., et al., Vitamin D receptor-targeted treatment to prevent pathological dedifferentiation of pancreatic beta cells under hyperglycaemic stress. Diabetes Metab, 2017.

  17. 17.

    Agouridis, A.P., M.S. Kostapanos, and M.S. Elisaf, Statins and their increased risk of inducing diabetes. Expert Opin Drug Saf, 2015. 14(12): p. 1835–1844. https://doi.org/10.1517/14740338.2015.1096343

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Neelankal John, A. and F.X. Jiang, An overview of type 2 diabetes and importance of vitamin D3-vitamin D receptor interaction in pancreatic beta-cells. J Diabetes Complications, 2017.

  19. 19.

    Chang, I., et al., Role of calcium in pancreatic islet cell death by IFN-gamma/TNF-alpha. J Immunol, 2004. 172(11): p. 7008–7014.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Sandler, S., et al., Interleukin-6 affects insulin secretion and glucose metabolism of rat pancreatic islets in vitro. Endocrinology, 1990. 126(2): p. 1288–1294.

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Ito, E., et al., PPAR-gamma overexpression selectively suppresses insulin secretory capacity in isolated pancreatic islets through induction of UCP-2 protein. Biochem Biophys Res Commun, 2004. 324(2): p. 810–814.

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Peschke, E., et al., Receptor (MT(1)) mediated influence of melatonin on cAMP concentration and insulin secretion of rat insulinoma cells INS-1. J Pineal Res, 2002. 33(2): p. 63–71.

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Hamidi, T., et al., Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis. J Clin Invest, 2012. 122(6): p. 2092–2103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Patil, D.P., et al., m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature, 2016. 537(7620): p. 369–373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Lindahl, M., et al., MANF is indispensable for the proliferation and survival of pancreatic beta cells. Cell Rep, 2014. 7(2): p. 366–375.

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Cape, A., et al., Loss of huntingtin-associated protein 1 impairs insulin secretion from pancreatic beta-cells. Cell Mol Life Sci, 2012. 69(8): p. 1305–1317.

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Font de Mora, J., et al., Ras-GRF1 signaling is required for normal beta-cell development and glucose homeostasis. EMBO J, 2003. 22(12): p. 3039–3049. https://doi.org/10.1093/emboj/cdg280.

  28. 28.

    Kim-Muller, J.Y., et al., Aldehyde dehydrogenase 1a3 defines a subset of failing pancreatic beta cells in diabetic mice. Nat Commun, 2016. 7: p. 12631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Kushch, N.L., et al., [Clinico-immunological indices, lipid peroxidation and contents of middle mass molecules in young children with different course of suppurative diseases of the lungs and pleura]. Klin Khir, 1990(6): p. 18–20.

    Google Scholar 

  30. 30.

    Rak, M., et al., Mitochondrial cytochrome c oxidase deficiency. Clin Sci (Lond), 2016. 130(6): p. 393–407.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We also thank the support of Diabetes Research (WA). Thanks to Dr. Angela Abraham and Leah Simmons for their suggestions.

Funding

We thank Telethon and the Perth Child Research Fund and the University of Western Australia for their financial support.

Author information

Affiliations

Authors

Contributions

ANJ wrote the manuscript, all the laboratory works and part of the bioinformatic analysis; RR performed the bioinformatics analysis and FXJ supervised this work.

Corresponding authors

Correspondence to Abraham Neelankal John or Fang-Xu Jiang.

Ethics declarations

The Animal Resource Centre Ethics Committee, Murdoch University approved the use of mice for islet purification of wild-type, db/+ and db/db.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neelankal John, A., Ram, R. & Jiang, FX. RNA-Seq Analysis of Islets to Characterise the Dedifferentiation in Type 2 Diabetes Model Mice db/db. Endocr Pathol 29, 207–221 (2018). https://doi.org/10.1007/s12022-018-9523-x

Download citation

Keywords

  • Db/db islets
  • β-cell dedifferentiation
  • Network analysis