Skip to main content

Advertisement

Log in

PD-L1 and IDO1 Are Expressed in Poorly Differentiated Thyroid Carcinoma

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Poorly differentiated thyroid carcinoma (PDTC) is an aggressive form of thyroid cancer that currently has limited effective treatment options. Immune checkpoint inhibitors (ICIs) have shown to be an effective treatment for a variety of carcinomas. In this study, we explore whether immune checkpoint pathways, such as programmed cell death ligand 1 (PD-L1) and indoleamine 2,3-dioxygenase 1 (IDO1), are activated in a cohort of patients with PDTC to determine whether ICIs may be an effective therapy for these patients. PDTC from 28 patients were stained for IDO1, PD-L1, and CD8 using immunohistochemistry. Staining was scored using an H-score, and PD-L1 and IDO1 expression was correlated with clinicopathologic characteristics. Positivity for PD-L1 and IDO1 was set at an H-score cutoff of five. Twenty-five percent (n = 7/28) of the PDTC were positive for PD-L1 expression. Twenty-nine percent (n = 2/7) of the PD-L1 positive PDTCs also co-expressed IDO1. The expression of PD-L1 in PDTC was significantly associated with tumor size and multifocality, with a non-significant trend towards associations with older age, extrathyroidal extension, presence of metastasis, higher stage, increased number of CD8+ T cells, and decreased disease-free and overall survival. PD-L1 expression occurs in a subset of PDTC, and is associated with a subset of clinical features of aggressive thyroid disease. Given the limited effective treatments for this patient population, consideration for ICIs as monotherapy or in combination with an IDO1 inhibitor should be explored as a novel treatment modality for patients with PDTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. VolanteM, ColliniP, NikiforovYE, et al (2007) Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol31:1256–1264

    Article  PubMed  Google Scholar 

  2. KakudoK, BaiY, KatayamaS, et al (2009) Classification of follicular cell tumors of the thyroid gland: Analysis involving Japanese patients from one institute. Pathol Int59:359–367

    Article  PubMed  Google Scholar 

  3. SandersEM, LiVolsiVA, BrierleyJ, et al (2007) An evidence-based review of poorly differentiated thyroid cancer. World J Surg31:934–945

    Article  PubMed  Google Scholar 

  4. LaiHW, LeeCH, ChenJY, et al (2006) Insular Thyroid Carcinoma: Collective Analysis of Clinicohistologic Prognostic Factors and Treatment Effect with Radioiodine or Radiation Therapy. J Am Coll Surg203:715–722

    Article  PubMed  Google Scholar 

  5. PatelKN, ShahaAR (2014) Poorly differentiated thyroid cancer. Curr Opin Otolaryngol Head Neck Surg22:121–126

    Article  CAS  PubMed  Google Scholar 

  6. DettmerM, SchmittA, SteinertH, et al (2011) Poorly Differentiated Thyroid Carcinomas: How Much Poorly Differentiated is Needed? Am J Surg Pathol35:1866–1872

    Article  PubMed  Google Scholar 

  7. NikiforovYE (2004) Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol15:319–327 . doi: https://doi.org/10.1385/EP:15:4:319

    Article  CAS  PubMed  Google Scholar 

  8. KunstmanJW, Christofer JuhlinC, GohG, et al (2015) Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet24:2318–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. SykorovaV, DvorakovaS, VcelakJ, et al (2015) Search for new genetic biomarkers in poorly differentiated and anaplastic thyroid carcinomas using next generation sequencing. Anticancer Res35:2029–2036

    CAS  PubMed  Google Scholar 

  10. LandaI, IbrahimpasicT, BoucaiL, et al (2016) Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest126:1052–1066

    Article  PubMed  PubMed Central  Google Scholar 

  11. XuB, GhosseinR (2016) Genomic Landscape of poorly Differentiated and Anaplastic Thyroid Carcinoma. Endocr Pathol27:205–212

    Article  CAS  PubMed  Google Scholar 

  12. LiuR, XingM (2016) TERT promoter mutations in thyroid cancer. Endocr Relat Cancer23:R143–R155 . doi: https://doi.org/10.1530/ERC-15-0533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. PaciniF, CastagnaMG, BrilliL, PentheroudakisG (2012) Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol23:110–119 . doi: https://doi.org/10.1093/annonc/mds230

    Article  Google Scholar 

  14. CabanillasME, SchlumbergerM, JarzabB, et al (2015) A Phase 2 Trial of Lenvatinib (E7080) in Advanced, Progressive, Radioiodine-Refractory, Differentiated Thyroid Cancer: A Clinical Outcomes and Biomarker Assessment. Cancer121:2749–2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. CabanillasME, HabraMA (2015) Lenvatinib: Role in thyroid cancer and other solid tumors. Cancer Treat Rev42:47–55

    Article  PubMed  Google Scholar 

  16. PardollDM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer12:252–264 . doi: https://doi.org/10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. BardhanK, AnagnostouT, BoussiotisVA (2016) The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Front Immunol7:550

    Article  PubMed  PubMed Central  Google Scholar 

  18. DyckL, MillsKHG (2017) Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol47:765–779

    Article  CAS  PubMed  Google Scholar 

  19. DevjiT, LevineO, NeupaneB, et al (2016) Systemic Therapy for Previously Untreated Advanced BRAF-Mutated Melanoma. JAMA Oncol150:179–185

    Google Scholar 

  20. EllisPM, VellaET, UngYC (2017) Immune Checkpoint Inhibitors for Patients With Advanced Non–Small-Cell Lung Cancer: A Systematic Review. Clin Lung Cancer

  21. MirghaniH, AmenF, BlanchardP, et al (2015) Treatment de-escalation in HPV-positive oropharyngeal carcinoma: Ongoing trials, critical issues and perspectives. Int J Cancer136:1494–1503

    Article  CAS  PubMed  Google Scholar 

  22. KaufmanHL, RussellJ, HamidO, et al (2016) Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol17:1374–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. ChaE, WallinJ, KowanetzM (2015) PD-L1 Inhibition With MPDL3280A for Solid Tumors. Semin Oncol42:484–487

    Article  CAS  PubMed  Google Scholar 

  24. PatnaikA, KangSP, RascoD, et al (2015) Phase I study of pembrolizumab (MK-3475; Anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res21:4286–4293

    Article  CAS  PubMed  Google Scholar 

  25. CarterLL, FouserLA, JussifJ, et al (2002) PD-1:PD-L inhibitory pathway affects both CD4+ and CD8+ T cells and is overcome by IL-2. Eur J Immunol32:634–643

    Article  CAS  PubMed  Google Scholar 

  26. BrahmerJR, TykodiSS, ChowLQM, et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med366:2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. ChenDS, IrvingBA, HodiFS (2012) Molecular pathways: Next-generation immunotherapy-inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res18:6580–6587

    Article  CAS  PubMed  Google Scholar 

  28. CunhaLL, MarcelloMA, MorariEC, et al (2013) Differentiated thyroid carcinomas may elude the immune system by B7H1 upregulation. Endocr Relat Cancer20:103–110

    Article  CAS  PubMed  Google Scholar 

  29. FrenchJD, KotnisGR, SaidS, et al (2012) Programmed death-1+ T cells and regulatory T cells are enriched in tumor-involved lymph nodes and associated with aggressive features in papillary thyroid cancer. J Clin Endocrinol Metab97:934–943

    Article  Google Scholar 

  30. BraunerE, GundaV, Borre P Vanden, et al. (2016) Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer. Oncotarget7:17194–17211

    Article  PubMed  PubMed Central  Google Scholar 

  31. KolliparaR, SchneiderB, RadovichM, et al (2017) Exceptional Response with Immunotherapy in a Patient with Anaplastic Thyroid Cancer. Oncologist. 22:1149–1151

  32. MoffettJR, NamboodiriMA (2003) Tryptophan and the immune response. Immunol Cell Biol81:247–265

    Article  CAS  PubMed  Google Scholar 

  33. LobS, KonigsrainerA, RammenseeHG, et al (2009) Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat Rev Cancer9:445–452

    Article  PubMed  Google Scholar 

  34. AzumaK, OtaK, KawaharaA, et al (2014) Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann Oncol25:1935–1940

    Article  CAS  PubMed  Google Scholar 

  35. MorettiS, MenicaliE, VoceP, et al (2014) Indoleamine 2,3-Dioxygenase 1 (IDO1) Is Up-Regulated in Thyroid Carcinoma and Drives the Development of an Immunosuppressant Tumor Microenvironment. J Clin Endocrinol Metab. 99:832–840

  36. CarboneDP, ReckM, Paz-AresL, et al (2017) First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N Engl J Med376:2415–2426

    Article  CAS  PubMed  Google Scholar 

  37. Lyford-PikeS, PengS, YoungGD, et al (2013) Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res73:1733–1741 . doi: https://doi.org/10.1158/0008-5472.CAN-12-2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. WangQ, WuX (2017) Primary and acquired resistance to PD-1/PD-L1 blockade in cancer treatment. Int Immunopharmacol46:210–219

    Article  CAS  PubMed  Google Scholar 

  39. BelloneM, EliaAR (2017) Constitutive and acquired mechanisms of resistance to immune checkpoint blockade in human cancer. Cytokine Growth Factor Rev36:17–24

    Article  CAS  PubMed  Google Scholar 

  40. SeversonJJ, SerracinoHS, MateescuV, et al (2015) PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res3:620–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. AhnS, KimTH, KimSW, et al (2017) Comprehensive screening for PD-L1 expression in thyroid cancer. Endocr Relat Cancer24:97–106

    Article  CAS  PubMed  Google Scholar 

  42. AngellTE, LechnerMG, JangJK, et al (2014) BRAF V600E in papillary thyroid carcinoma is associated with increased programmed death ligand 1 expression and suppressive immune cell infiltration. Thyroid24:1385–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. ChowdhuryS, VeyhlJ, JessaF, et al (2016) Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget7:32318–32328

    Article  PubMed  PubMed Central  Google Scholar 

  44. WangQ, LiuF, LiuL (2017) Prognostic significance of PD-L1 in solid tumors. Medicine (Baltimore)96:e6369

    Article  CAS  Google Scholar 

  45. LiJ, WangP, XuY (2017) Prognostic value of programmed cell death ligand 1 expression in patients with head and neck cancer: A systematic review and meta-analysis. PLoS One12:e0179536

    Article  PubMed  PubMed Central  Google Scholar 

  46. XuF, XuL, WangQ, et al (2015) Clinicopathological and prognostic value of programmed death ligand-1 (PD-L1) in renal cell carcinoma: a meta-analysis. Int J Clin Exp Med. 8:14595–14603

  47. PanZ, YeF, WuX, et al (2015) Clinicopathological and prognostic significance of programmed cell death ligand1 (PD-L1) expression in patients with non-small cell lung cancer: a meta-analysis. J Thorac Dis. 7:462–470. https://doi.org/10.3978/j.issn.2072-1439.2015.02.13

  48. ShiR, QuN, LuoT, et al (2017) Programmed Death-Ligand 1 Expression in Papillary Thyroid Cancer and Its Correlation with Clinicopathologic Factors and Recurrence. Thyroid27:537–545

    Article  CAS  PubMed  Google Scholar 

  49. ChenN, FangW, LinZ, et al (2017) KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunol Immunother. 66:1175–1187

  50. JiangX, ZhouJ, Giobbie-HurderA, et al (2013) The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin Cancer Res19:598–609 . doi: https://doi.org/10.1158/1078-0432.CCR-12-2731

    Article  CAS  PubMed  Google Scholar 

  51. OttPA, BhardwajN (2013) Impact of MAPK Pathway Activation in BRAFV600 Melanoma on T Cell and Dendritic Cell Function. Front Immunol4:1–7

    Article  CAS  Google Scholar 

  52. LeeS, JangB, LeeS, et al (2006) Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-γ-induced upregulation of B7-H1 (CD274). FEBS Lett580:755–762

    Article  CAS  PubMed  Google Scholar 

  53. RibasA (2015) Adaptive immune resistance: How cancer protects from immune attack. Cancer Discov.5:915–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. RooneyMS, ShuklaSA, WuCJ, et al (2014) Article Molecular and Genetic Properties of Tumors Associated with Local Immune Cytolytic Activity. Cell160:48–61

    Article  Google Scholar 

  55. BalermpasP, RödelF, KrauseM, et al (2017) The PD-1/PD-L1 axis and human papilloma virus in patients with head and neck cancer after adjuvant chemoradiotherapy: A multicentre study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Int J Cancer141:594–603

    Article  CAS  PubMed  Google Scholar 

  56. LlosaNJ, CruiseM, TamA, et al (2014) The Vigorous Immune Microenvironment of Microsatellite Instable Colon Cancer Is Balanced by Multiple Counter-Inhibitory Checkpoints. Cancer Discov. 5:43–52

  57. RosenbaumMW, BledsoeJR, Morales-oyarvideV, et al (2016) PD-L1 expression in colorectal cancer is associated with microsatellite instability , BRAF mutation , medullary morphology and cytotoxic tumor-infiltrating lymphocytes. Mod Pathol29:1104–1112

    Article  CAS  PubMed  Google Scholar 

  58. LeDT, DurhamJN, SmithKN, et al (2017) Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. 357:409–413

  59. USFDA (2017) FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication. https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm560040.htm?platform=hootsuite. Accessed 1 Jan 2017

  60. TrottJF, KimJ, AboudOA, et al (2016) Inhibiting tryptophan metabolism enhances interferon therapy in kidney cancer. Oncotarget7:66540–66557

    Article  PubMed  PubMed Central  Google Scholar 

  61. MorettiS, MenicaliE, NucciN, et al (2017) Signal Transducer and Activator of Transcription 1 Plays a Pivotal Role in RET/PTC3 Oncogene-induced Expression of Indoleamine 2,3-Dioxygenase 1. J Biol Chem292:1785–1797

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the NIH/NIDCR R01DE025340 (WCF and SIP), NIH 1R01CA149738-01 (SP), NIH 5T32DK00702842 (BJG), and Stand Up To Cancer-American Cancer Society Dream Team Translation Research Grant (MMK).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew W. Rosenbaum or William C. Faquin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenbaum, M.W., Gigliotti, B.J., Pai, S.I. et al. PD-L1 and IDO1 Are Expressed in Poorly Differentiated Thyroid Carcinoma. Endocr Pathol 29, 59–67 (2018). https://doi.org/10.1007/s12022-018-9514-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-018-9514-y

Keywords

Navigation