Skip to main content
Log in

Comparison of Three Ki-67 Index Quantification Methods and Clinical Significance in Pancreatic Neuroendocrine Tumors

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

The Ki-67 index is essential in the pathological reports for pancreatic neuroendocrine tumors. There are three methods to determine the Ki-67 index including eyeball estimation, manual counting, or automated digital imaging analysis. The goal of this study was to compare the three quantification methods with the clinical outcome to determine the best method for clinical practice. Ki-67 immunostaining was performed on 97 resected pancreatic neuroendocrine tumors. The three methods of quantification were employed: (1) an average of eyeball estimation by three pathologists; (2) manual counting of at least 500 tumor cells; and (3) digital imaging analysis quantitation by selecting 8–10 hot spot regions. All tumors were graded according to the 2010 WHO grading system. The three quantification methods for the Ki-67 index had almost perfect agreement. The concordance between manual counting and digital imaging analysis and between manual counting and average eyeball estimation were 0.97 and 0.88, respectively. The concordance among the three pathologists’ eyeball estimation was 0.86. All three methods correlated with patients’ survival using the 2010 WHO grading system. Eyeball estimation scores were significantly less than those of the other two methods and tended to downgrade more tumors to grade 1, but they had higher predictive ability for survival and recurrence. The WHO system using the mitotic rate could also separate patients with different survival and even downgraded more tumors to grade 1. The results suggest the necessity of a consensus among pathologists for the method to determine the Ki-67 index and proper cutoff of the Ki-67 index for better clinical correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferrone CR, Tang LH, Tomlinson J, Gonen M, Hochwald SN, Brennan MF, et al. Determining prognosis in patients with pancreatic endocrine neoplasms: can the WHO classification system be simplified? J Clin Oncol. 2007;25(35):5609–15.

    Article  PubMed  Google Scholar 

  2. Jamali M, Chetty R. Predicting prognosis in gastroentero-pancreatic neuroendocrine tumors: an overview and the value of Ki-67 immunostaining. Endocrine pathology. 2008;19(4):282–8.

    Article  CAS  PubMed  Google Scholar 

  3. La Rosa S, Klersy C, Uccella S, Dainese L, Albarello L, Sonzogni A, et al. Improved histologic and clinicopathologic criteria for prognostic evaluation of pancreatic endocrine tumors. Hum Pathol. 2009;40(1):30–40.

    Article  PubMed  Google Scholar 

  4. Scarpa A, Mantovani W, Capelli P, Beghelli S, Boninsegna L, Bettini R, et al. Pancreatic endocrine tumors: improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients. Mod Pathol. 2010;23(6):824–33.

    Article  CAS  PubMed  Google Scholar 

  5. Hochwald SN, Zee S, Conlon KC, Colleoni R, Louie O, Brennan MF, et al. Prognostic factors in pancreatic endocrine neoplasms: an analysis of 136 cases with a proposal for low-grade and intermediate-grade groups. J Clin Oncol. 2002;20(11):2633–42.

    Article  PubMed  Google Scholar 

  6. Capella C, Heitz PU, Hofler H, Solcia E, Kloppel G. Revised classification of neuroendocrine tumours of the lung, pancreas and gut. Virchows Arch. 1995;425(6):547–60.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang L, Lohse CM, Dao LN, Smyrk TC. Proposed histopathologic grading system derived from a study of KIT and CK19 expression in pancreatic endocrine neoplasm. Hum Pathol. 2011;42(3):324–31.

    Article  CAS  PubMed  Google Scholar 

  8. DeLellis RA LR, Heitz PU, and Eng C. Pathology & Genetics, Tumors of Endocrine Organs 2004.

  9. Rindi G, de Herder WW, O'Toole D, Wiedenmann B. Consensus guidelines for the management of patients with digestive neuroendocrine tumors: why such guidelines and how we went about It. Neuroendocrinology. 2006;84(3):155–7.

    Article  CAS  PubMed  Google Scholar 

  10. Yamaguchi T, Fujimori T, Tomita S, Ichikawa K, Mitomi H, Ohno K, et al. Clinical validation of the gastrointestinal NET grading system: Ki67 index criteria of the WHO 2010 classification is appropriate to predict metastasis or recurrence. Diagn Pathol. 2013;8:65.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Bosman F, Carneiro F, Hruban R, Theise N. WHO classification of tumours of the digestive system. Lyon: International Agency for Research on Cancer; 2010.

    Google Scholar 

  12. Adsay V. Ki67 labeling index in neuroendocrine tumors of the gastrointestinal and pancreatobiliary tract: to count or not to count is not the question, but rather how to count. The American journal of surgical pathology. 2012;36(12):1743–6.

    Article  PubMed  Google Scholar 

  13. Klimstra DS, Modlin IR, Adsay NV, Chetty R, Deshpande V, Gönen M, Jensen RT, Kidd M, Kulke MH, Lloyd RV, Moran C, Moss SF, Oberg K, O'Toole D, Rindi G, Robert ME, Suster S, Tang LH, Tzen CY, Washington MK, Wiedenmann B, Yao J. Pathology Reporting of Neuroendocrine Tumors: Application of the Delphic Consensus Process to the Development of a Minimum Pathology Data Set. Am J Surg Pathol 2010;34(3):300–13

    Article  PubMed  Google Scholar 

  14. Rindi G, Kloppel G, Alhman H, Caplin M, Couvelard A, de Herder WW, et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006;449(4):395–401.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Reid MD, Bagci P, Ohike N, Saka B, Erbarut Seven I, Dursun N, et al. Calculation of the Ki67 index in pancreatic neuroendocrine tumors: a comparative analysis of four counting methodologies. Mod Pathol. 2015;28(5):686–94.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Zhang L, Smyrk TC, Oliveira AM, Lohse CM, Zhang S, Johnson MR, et al. KIT is an Independent Prognostic Marker for Pancreatic Endocrine Tumors: A Finding Derived From Analysis of Islet Cell Differentiation Markers. Am J Surg Pathol. 2009;33(10):1562–9.

    Article  PubMed  Google Scholar 

  17. Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255–68.

    Article  CAS  PubMed  Google Scholar 

  18. Harrell FE, Jr., Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in medicine. 1996;15(4):361–87.

    Article  PubMed  Google Scholar 

  19. McCall CM, Shi C, Cornish TC, Klimstra DS, Tang LH, Basturk O, et al. Grading of well-differentiated pancreatic neuroendocrine tumors is improved by the inclusion of both Ki67 proliferative index and mitotic rate. The American journal of surgical pathology. 2013;37(11):1671–7.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sorbye H, Strosberg J, Baudin E, Klimstra DS, Yao JC. Gastroenteropancreatic high-grade neuroendocrine carcinoma. Cancer. 2014;120(18):2814–23.

    Article  CAS  PubMed  Google Scholar 

  21. Khan MS, Luong TV, Watkins J, Toumpanakis C, Caplin ME, Meyer T. A comparison of Ki-67 and mitotic count as prognostic markers for metastatic pancreatic and midgut neuroendocrine neoplasms. British journal of cancer. 2013;108(9):1838–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Tang LH, Gonen M, Hedvat C, Modlin IM, Klimstra DS. Objective quantification of the Ki67 proliferative index in neuroendocrine tumors of the gastroenteropancreatic system: a comparison of digital image analysis with manual methods. The American journal of surgical pathology. 2012;36(12):1761–70.

    Article  PubMed  Google Scholar 

  23. Klapper W, Hoster E, Determann O, Oschlies I, van der Laak J, Berger F, et al. Ki-67 as a prognostic marker in mantle cell lymphoma-consensus guidelines of the pathology panel of the European MCL Network. Journal of Hematopathology. 2009;2(2):103–11.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Schwartz BR, Pinkus G, Bacus S, Toder M, Weinberg DS. Cell proliferation in non-Hodgkin's lymphomas. Digital image analysis of Ki-67 antibody staining. The American journal of pathology. 1989;134(2):327–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Walts AE, Ines D, Marchevsky AM. Limited role of Ki-67 proliferative index in predicting overall short-term survival in patients with typical and atypical pulmonary carcinoid tumors. Mod Pathol. 2012; 25 (9): 1258–64.

    Article  PubMed  Google Scholar 

  26. Yang Z, Tang LH, Klimstra DS. Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg Pathol. 2011;35(6):853–60.

    Article  PubMed  Google Scholar 

  27. Nielsen PS, Riber-Hansen R, Raundahl J, Steiniche T. Automated Quantification of MART1-Verified Ki67 Indices by Digital Image Analysis in Melanocytic Lesions. Archives of pathology & laboratory medicine. 2012;136(6):627–34.

    Article  Google Scholar 

  28. Tuominen VJ, Ruotoistenmaki S, Viitanen A, Jumppanen M, Isola J. ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res. 2010;12(4):R56.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Dhall D, Mertens R, Bresee C, Parakh R, Wang HL, Li M, et al. Ki-67 proliferative index predicts progression-free survival of patients with well-differentiated ileal neuroendocrine tumors. Hum Pathol. 2012;43(4):489–95.

    Article  CAS  PubMed  Google Scholar 

  30. Goedkoop AY, de Rie MA, Teunissen MB, Picavet DI, van der Hall PO, Bos JD, et al. Digital image analysis for the evaluation of the inflammatory infiltrate in psoriasis. Archives of dermatological research. 2005;297(2):51–9.

    Article  PubMed  Google Scholar 

  31. Kraan MC, Haringman JJ, Ahern MJ, Breedveld FC, Smith MD, Tak PP. Quantification of the cell infiltrate in synovial tissue by digital image analysis. Rheumatology. 2000;39(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  32. Noutsias M, Pauschinger M, Ostermann K, Escher F, Blohm JH, Schultheiss H, et al. Digital image analysis system for the quantification of infiltrates and cell adhesion molecules in inflammatory cardiomyopathy. Med Sci Monit. 2002;8(5):MT59-71.

    CAS  PubMed  Google Scholar 

  33. Sont JK, De Boer WI, van Schadewijk WA, Grunberg K, van Krieken JH, Hiemstra PS, et al. Fully automated assessment of inflammatory cell counts and cytokine expression in bronchial tissue. American journal of respiratory and critical care medicine. 2003;167(11):1496–503.

    Article  PubMed  Google Scholar 

  34. Ekeblad S, Skogseid B, Dunder K, Oberg K, Eriksson B. Prognostic factors and survival in 324 patients with pancreatic endocrine tumor treated at a single institution. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008;14(23):7798–803.

    Article  CAS  Google Scholar 

  35. Fischer L, Kleeff J, Esposito I, Hinz U, Zimmermann A, Friess H, et al. Clinical outcome and long-term survival in 118 consecutive patients with neuroendocrine tumours of the pancreas. Br J Surg. 2008;95(5):627–35.

    Article  CAS  PubMed  Google Scholar 

  36. Pape UF, Jann H, Muller-Nordhorn J, Bockelbrink A, Berndt U, Willich SN, et al. Prognostic relevance of a novel TNM classification system for upper gastroenteropancreatic neuroendocrine tumors. Cancer. 2008;113(2):256–65.

    Article  PubMed  Google Scholar 

  37. Garcia-Carbonero R, Capdevila J, Crespo-Herrero G, Diaz-Perez JA, Martinez Del Prado MP, Alonso Orduna V, et al. Incidence, patterns of care and prognostic factors for outcome of gastroenteropancreatic neuroendocrine tumors (GEP-NETs): results from the National Cancer Registry of Spain (RGETNE). Ann Oncol. 2010;21(9):1794–803.

    Article  CAS  PubMed  Google Scholar 

  38. Scarpa A, Mantovani W, Capelli P, Beghelli S, Boninsegna L, Bettini R, et al. Pancreatic endocrine tumors: improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients. Mod Pathol. 2010;23(6):824–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors have no conflicts of interest or funding to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kroneman, T.N., Voss, J.S., Lohse, C.M. et al. Comparison of Three Ki-67 Index Quantification Methods and Clinical Significance in Pancreatic Neuroendocrine Tumors. Endocr Pathol 26, 255–262 (2015). https://doi.org/10.1007/s12022-015-9379-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-015-9379-2

Keywords

Navigation