Skip to main content
Log in

Combined Papillary and Mucoepidermoid Carcinoma of the Thyroid Gland: a Possible Collision Tumor Diagnosed on Fine-Needle Cytology. Report of a Case with Immunocytochemical and Molecular Correlations

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Fine-needle cytology (FNC) is frequently used to diagnose thyroid nodules discovered by palpation or imaging studies. Molecular tests on FNC material may increase its diagnostic accuracy. We report a case of a classic papillary thyroid carcinoma combined with a mucoepidermoid carcinoma correctly identified on FNC. The papillary component had a classic immunophenotype (CK19+, TTF1+), while the mucoepidermoid one was only focally CK19+. Point mutations (BRAF and RAS) and rearrangements (RET/PTC) of the papillary component have been also investigated on FNC samples, with resulting concurrent rearrangements of RET/PTC1 and RET/PTC3, but no point mutations. The histogenesis of combined papillary and mucoepidermoid carcinoma of the thyroid still remains partly unsettled, and further genomic studies are needed to shed some more light on this peculiar neoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL et al (2006) Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 16:109–142.

    Article  PubMed  Google Scholar 

  2. Pizzolanti G, Russo L, Richiusa P, Bronte V, Nuara RB et al (2007) Fine-needle aspiration molecular analysis for the diagnosis of papillary thyroid carcinoma through BRAF V600E mutation and RET/PTC rearrangement. Thyroid 17:1109–1115.

    Article  CAS  PubMed  Google Scholar 

  3. Cheung CC, Carydis B, Ezzat S, Bedard YC, Asa SL (2001) Analysis of ret/PTC gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer. J Clin Endocrinol Metab 86:2187–2190.

    Article  CAS  PubMed  Google Scholar 

  4. Nikiforov YE. (2012) Thyroid tumors: classification, staging and general considerations. In: Nikiforov YE, Biddinger PW, Thompson LDR (eds). Diagnostic pathology and molecular genetics of the thyroid—a comprehensive guide for practicing thyroid pathology, 2nd edition. Lippincott Williams & Wilkins, pp 108–118.

  5. Baloch ZW & LiVolsi VA (2004) Fine-needle aspiration of thyroid nodules: past, present, and future. Endocr Pract 10:234–241.

    Article  PubMed  Google Scholar 

  6. Xing M, Tufano RP, Tufaro AP, Basaria S, Ewertz M. et al (2004) Detection of BRAF mutation onfine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. J Clin Endocrinol Metab 89:2867–2872.

    Article  CAS  PubMed  Google Scholar 

  7. Prichard RS, Lee JC, Gill AJ, Sywak MS, Fingleton L, Robinson BG, Sidhu SB, Delbridge LW (2012) Mucoepidermoid carcinoma of the thyroid: a report of three cases and postulated histogenesis. Thyroid 22:205–9.

    Article  PubMed  Google Scholar 

  8. Jung YH, Kang MS (2010) Composite follicular variant of papillary carcinoma and mucoepidermoid carcinoma of thyroid gland: a case report. J Korean Med Sci 25:1683–7.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Monroe MM, Sauer DA, Samuels MH, Gross ND (2009) Coexistent conventional mucoepidermoid carcinoma of the thyroid (MECT) and papillary thyroid carcinoma. Arch Otolaryngol Head Neck Surg 135(7):720

    Article  PubMed  Google Scholar 

  10. Farhat NA, Faquin WC, Sadow PM (2013) Primary mucoepidermoid carcinoma of the thyroid gland: a report of three cases and review of the literature. Endocr Pathol 24(4):229–33.

    Article  PubMed  Google Scholar 

  11. Arezzo A, Patetta R, Ceppa P, Borgonova G, Torre G and Mattioli FP (1998) Mucoepidermoid carcinoma of the thyroid gland arising from a papillary epithelial neoplasm. Am Surg 64: 307–311.

    CAS  PubMed  Google Scholar 

  12. Viciana MJ, Galera-Davidson H, Martin-Lacave I, Segura DI and Loizaga JM (1996) Papillary carcinoma of the thyroid with mucoepidermoid differentiation. Arch Pathol Lab Med 120: 397–398.

    CAS  PubMed  Google Scholar 

  13. Nath V, Parks GE, Baliga M, Hartle EO, Geisinger KR, Shenoy V (2014) Mucoepidermoid carcinoma of the thyroid with concomitant papillary carcinoma: comparison of findings on fine-needle aspiration biopsy and histology. Endocr Pathol 25(4):427–432.

    Article  PubMed  Google Scholar 

  14. Harach HR (1985) A study on the relationship between solid cell nests and mucoepidermoid carcinoma of the thyroid. Histopathology 9:195–207.

    Article  CAS  PubMed  Google Scholar 

  15. Moreno MJR, Galera-Ruiz, H, DeMiguel M, López MIC, Illanes M, and Galera-Davidson H (2011) Immunohistochemical profile of solid cell nest of the thyroid gland. Endocr Pathol 22:35–39.

    Article  Google Scholar 

  16. Chiofalo MG, Losito NS, Fulciniti F, Setola SV, Tommaselli A, Marone U, Di Cecilia ML, Pezzullo L (2012) Axillary node metastasis from differentiated thyroid carcinoma with Hürthle and signet ring cell differentiation. A case of disseminated thyroid cancer with peculiar histologic findings. BMC Cancer 12:55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sadow PM, Hunt JL (2010) Mixed medullary-follicular-derived carcinomas of the thyroid gland. Adv Anat Pathol 17(4):282–5.

    Article  PubMed  Google Scholar 

  18. Jen-Der Lin MD, Chuen Hsueh MD, Bie-Yu Huang MD (2011) Papillary thyroid carcinoma with different histological patterns. Chang Gung Med J 34(1):23–34.

  19. Melillo RM, Castellone MD, Guarino V, De Falco V, Cirafici AM et al (2005) The RET/PTC–RAS–BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest 115:1068–1081.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signalling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457.

    CAS  PubMed  Google Scholar 

  21. Carta C, Moretti S, Passeri L, Barbi F, Avenia N et al (2006) Genotyping of an Italian papillary thyroid carcinoma cohort revealed high prevalence of BRAF mutations, absence of RAS mutations and allowed the detection of a new mutation of BRAF oncoprotein (BRAF(V599lns)). Clin Endocrinol 64:105–109.

    Article  CAS  Google Scholar 

  22. Bansal M, Gandhi M, Ferris RL, Nikiforova MN, Yip L, Carty SE, Nikiforov YE (2013) Molecular and histopathologic characteristics of multifocal papillary thyroid carcinoma. Am J Surg Pathos 37:1586–1591.

    Article  Google Scholar 

  23. Soares P, Trovisco V, Rocha AS, Lima J, Castro P et al (2003) BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22:4578–4580.

    Article  CAS  PubMed  Google Scholar 

  24. Frattini M, Ferrario C, Bressan P, Balestra D, De Cecco L, Mondellini P et al (2004). Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer. Oncogene 23:7436–7440.

    Article  CAS  PubMed  Google Scholar 

  25. Sugg SL, Ezzat S, Rosen IB, Freeman JL, Asa SL (1998) Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J Clin Endocrinol Metab 83:4116–412251.

    CAS  PubMed  Google Scholar 

  26. Elisei R, Romei C, Vorontsova T, Cosci B, Veremeychik V et al (2001) RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab 86:3211–3216.

    CAS  PubMed  Google Scholar 

  27. Shattuck TM, Westra WH, Ladenson PW, Arnold A (2005) Independent clonal origins of distinct tumor foci in multifocal papillary thyroid carcinoma. N Engl J Med 352(23):2406–12.

    Article  CAS  PubMed  Google Scholar 

  28. Jovanovic L, Delahunt B, McIver B, Eberhardt NL, Grebe SK (2008) Most multifocal papillary thyroid carcinomas acquire genetic and morphotype diversity through subclonal evolution following the intra-glandular spread of the initial neoplastic clone. J Pathol 215(2):145–54.

    Article  CAS  PubMed  Google Scholar 

  29. Lin X, Finkelstein SD, Zhu B, Silverman JF (2008) Molecular analysis of multifocal papillary thyroid carcinoma. J Mol Endocrinol 41(4):195–203.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the technical assistance of Mrs. Angela Manna, Dr. Antonella Gioioso, and Dr. Fernando Caccavello. They also thank Mrs. Ornella Sacco for data managing assistance and Dr. Alessandra Trocino for her precious librarian contributions.

Conflict of Interest

The authors declare no conflict of interest regarding the production of this article. The authors have no personal financial or institutional interest in any of the drugs, materials, or devices described in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gabriella Malzone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fulciniti, F., Vuttariello, E., Calise, C. et al. Combined Papillary and Mucoepidermoid Carcinoma of the Thyroid Gland: a Possible Collision Tumor Diagnosed on Fine-Needle Cytology. Report of a Case with Immunocytochemical and Molecular Correlations. Endocr Pathol 26, 140–144 (2015). https://doi.org/10.1007/s12022-015-9364-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-015-9364-9

Keywords

Navigation