Skip to main content

Advertisement

Log in

Rationale for Anti-angiogenic Therapy in Pheochromocytoma and Paraganglioma

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Pheochromocytomas and paragangliomas are highly vascularized tumors which are candidates for anti-angiogenic therapies. Several studies have reported the association of vascular endothelial growth factor (VEGF) overexpression with malignancy, but none took into account the genetic status of the patients or tumors, which may have a major influence on such observations. Transcriptome studies indeed revealed that pheochromocytomas and paragangliomas can be classified into two major clusters depending on their gene expression profile: Cluster 1 comprises samples associated with a hypoxic signature such as SDHx- and VHL-related tumors and cluster 2 includes RET, NF1, and TMEM127-mutated tumors, as well as most of sporadic tumors. The aim of this study was to provide a comprehensive rationale for the targeting of angiogenesis in patients with malignant forms of the disease. We used in situ hybridization, immunohistochemistry, and microarray gene expression profiling to evaluate angiogenesis and the expression of several angiogenic factors in a large cohort of pheochromocytomas and paragangliomas. We also studied the activation of mTOR by assessing the phosphorylation of its targets, P70 S6 kinase and 4E-BP1. These results were correlated with both malignancy and transcription signature. Our results reveal that cluster 1 tumors display a marked increase in both vascularization and in the expression of major angiogenic molecules, including VEGF, its receptors, HIF2α, Angiopoietin-2, and the endothelin receptors ETA and ETB. These overexpressions were observed in both benign and malignant samples of cluster 1 and thus appeared to be mainly dependent on the pseudo-hypoxic status of these tumors. The mTOR pathway was potentially activated in half of the tumors studied, with a slight increase in cluster 2 pheochromocytomas. Our results suggest that there is a strong rationale for anti-VEGF-based therapeutic strategies in malignant pheochromocytomas and paragangliomas, in particular in those associated with mutations in the SDHB gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gimenez-Roqueplo AP, Burnichon N, Amar L, Favier J, Jeunemaitre X, Plouin PF Recent advances in the genetics of phaeochromocytoma and functional paraganglioma. Clinical and experimental pharmacology & physiology 35: 376–379, 2008.

    Article  CAS  Google Scholar 

  2. Mulligan LM, Kwok JB, Healey CS et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363: 458–460, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Wallace MR, Marchuk DA, Andersen LB et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249: 181–186, 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Latif F, Tory K, Gnarra J et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260: 1317–1320., 1993.

    Article  PubMed  CAS  Google Scholar 

  5. Burnichon N, Briere JJ, Libe R et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 19: 3011–3020, 2010.

    Article  PubMed  CAS  Google Scholar 

  6. Astuti D, Latif F, Dallol A et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69: 49–54., 2001.

    Article  PubMed  CAS  Google Scholar 

  7. Niemann S, Muller U Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26: 268–270, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Baysal BE, Ferrell RE, Willett-Brozick JE et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287: 848–851., 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Bayley JP, Kunst HP, Cascon A et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 11: 366–372, 2010.

    Article  PubMed  CAS  Google Scholar 

  10. Qin Y, Yao L, King EE et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet 42: 229–233, 2010.

    Article  PubMed  CAS  Google Scholar 

  11. Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet 43: 663–667, 2011.

    Article  PubMed  CAS  Google Scholar 

  12. Lloyd R, Tischler A, Kimura N, McNicol A, Young JW. Adrenal tumours: Introduction. In: DeLellis RA LR, Heitz PU, Eng C, eds. WHO classification of tumours—Pathology and Genetics—Tumours of endocrine organs. IARC Press, Lyon, 2004.

  13. Amar L, Baudin E, Burnichon N et al. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J Clin Endocrinol Metab 92: 3822–3828, 2007.

    Article  PubMed  CAS  Google Scholar 

  14. Gimenez-Roqueplo AP, Favier J, Rustin P et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res 63: 5615–5621, 2003.

    PubMed  CAS  Google Scholar 

  15. Pasini B, Stratakis CA SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. Journal of internal medicine 266: 19–42, 2009.

    Article  PubMed  CAS  Google Scholar 

  16. Chrisoulidou A, Kaltsas G, Ilias I, Grossman AB The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr Relat Cancer 14: 569–585, 2007.

    Article  PubMed  CAS  Google Scholar 

  17. Ohji H, Sasagawa I, Iciyanagi O, Suzuki Y, Nakada T Tumour angiogenesis and Ki-67 expression in phaeochromocytoma. BJU Int 87: 381–385., 2001.

    Article  PubMed  CAS  Google Scholar 

  18. Salmenkivi K, Heikkila P, Liu J, Haglund C, Arola J VEGF in 105 pheochromocytomas: enhanced expression correlates with malignant outcome. Apmis 111: 458–464, 2003.

    Article  PubMed  Google Scholar 

  19. Liu Q, Djuricin G, Staren ED et al. Tumor angiogenesis in pheochromocytomas and paragangliomas. Surgery 120: 938–942; discussion 942–933., 1996.

    Article  PubMed  CAS  Google Scholar 

  20. Rooijens PP, de Krijger RR, Bonjer HJ et al. The significance of angiogenesis in malignant pheochromocytomas. Endocr Pathol 15: 39–45, 2004.

    Article  PubMed  Google Scholar 

  21. Zielke A, Middeke M, Hoffmann S et al. VEGF-mediated angiogenesis of human pheochromocytomas is associated to malignancy and inhibited by anti-VEGF antibodies in experimental tumors. Surgery 132: 1056–1063; discussion 1063, 2002.

    Article  PubMed  Google Scholar 

  22. Feng F, Zhu Y, Wang X et al. Predictive factors for malignant pheochromocytoma: analysis of 136 patients. The Journal of urology 185: 1583–1590, 2011.

    Article  PubMed  Google Scholar 

  23. Favier J, Plouin PF, Corvol P, Gasc JM Angiogenesis and vascular architecture in pheochromocytomas: distinctive traits in malignant tumors. Am J Pathol 161: 1235–1246, 2002.

    Article  PubMed  CAS  Google Scholar 

  24. Kolomecki K, Stepien H, Bartos M, Kuzdak K Usefulness of VEGF, MMP-2, MMP-3 and TIMP-2 serum level evaluation in patients with adrenal tumours. Endocrine regulations 35: 9–16, 2001.

    PubMed  CAS  Google Scholar 

  25. Takekoshi K, Isobe K, Yashiro T et al. Expression of vascular endothelial growth factor (VEGF) and its cognate receptors in human pheochromocytomas. Life Sci 74: 863–871, 2004.

    Article  PubMed  CAS  Google Scholar 

  26. Favier J, Gimenez-Roqueplo AP Pheochromocytomas: The (Pseudo)-hypoxic hypothesis. Best Pract Res Clin Endocrinol Metab 24: 957–968, 2010.

    Article  PubMed  CAS  Google Scholar 

  27. Dahia PL, Ross KN, Wright ME et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 1: 72–80, 2005.

    Article  PubMed  CAS  Google Scholar 

  28. Lopez-Jimenez E, Gomez-Lopez G, Leandro-Garcia LJ et al. Research resource: Transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol Endocrinol 24: 2382–2391, 2010.

    Article  PubMed  CAS  Google Scholar 

  29. Burnichon N, Vescovo L, Amar L et al. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet 20: 3974–3985, 2011.

    Article  PubMed  CAS  Google Scholar 

  30. Plouin PF, Gimenez-Roqueplo AP Initial work-up and long-term follow-up in patients with phaeochromocytomas and paragangliomas. Best Pract Res Clin Endocrinol Metab 20: 421–434, 2006.

    Article  PubMed  Google Scholar 

  31. Favier J, Kempf H, Corvol P, Gasc J Cloning and expression pattern of EPAS1 in the chicken embryo. Colocalization with tyrosine hydroxylase. FEBS Lett 462: 19–24, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Favier J, Briere JJ, Burnichon N et al. The Warburg effect is genetically determined in inherited pheochromocytomas. PloS one 4: e7094, 2009.

    Article  PubMed  Google Scholar 

  33. Jimenez C, Cabanillas ME, Santarpia L et al. Use of the tyrosine kinase inhibitor sunitinib in a patient with von Hippel-Lindau disease: targeting angiogenic factors in pheochromocytoma and other von Hippel-Lindau disease-related tumors. J Clin Endocrinol Metab 94: 386–391, 2009.

    Article  PubMed  CAS  Google Scholar 

  34. Joshua AM, Ezzat S, Asa SL et al. Rationale and evidence for sunitinib in the treatment of malignant paraganglioma/pheochromocytoma. J Clin Endocrinol Metab 94: 5–9, 2009.

    Article  PubMed  CAS  Google Scholar 

  35. Park KS, Lee JL, Ahn H et al. Sunitinib, a novel therapy for anthracycline- and cisplatin-refractory malignant pheochromocytoma. Jpn J Clin Oncol 39: 327–331, 2009.

    Article  PubMed  Google Scholar 

  36. Tuthill M, Barod R, Pyle L et al. A report of succinate dehydrogenase B deficiency associated with metastatic papillary renal cell carcinoma: successful treatment with the multi-targeted tyrosine kinase inhibitor sunitinib. BMJ Case Rep 2009, 2009.

  37. Hahn NM, Reckova M, Cheng L, Baldridge LA, Cummings OW, Sweeney CJ Patient with malignant paraganglioma responding to the multikinase inhibitor sunitinib malate. J Clin Oncol 27: 460–463, 2009.

    Article  PubMed  Google Scholar 

  38. Druce MR, Kaltsas GA, Fraenkel M, Gross DJ, Grossman AB Novel and evolving therapies in the treatment of malignant phaeochromocytoma: experience with the mTOR inhibitor everolimus (RAD001). Horm Metab Res 41: 697–702, 2009.

    Article  PubMed  CAS  Google Scholar 

  39. Ebos JM, Kerbel RS Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8: 210–221, 2011.

    Article  PubMed  CAS  Google Scholar 

  40. Jain RK, Duda DG, Willett CG et al. Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol 6: 327–338, 2009.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Programme Hospitalier de Recherche Clinique grant COMETE 3 (AOM 06 179) and by the Agence Nationale de la Recherche (ANR 08 GENOPATH 029 MitOxy). This work is part of the national program ‘Cartes d’Identité des Tumeurs’ funded and developed by the ‘Ligue Nationale contre le Cancer’ (http://cit.ligue-cancer.net). The authors thank Dr Jean-Marie Gasc and Pr Pierre Corvol for launching this study, more than 10 years ago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Favier.

Additional information

For submission for the Proceedings of the 3rd International Symposium on Pheochromocytoma and Paraganglioma

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favier, J., Igaz, P., Burnichon, N. et al. Rationale for Anti-angiogenic Therapy in Pheochromocytoma and Paraganglioma. Endocr Pathol 23, 34–42 (2012). https://doi.org/10.1007/s12022-011-9189-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-011-9189-0

Keywords

Navigation