Skip to main content
Log in

ACTH and α-Subunit are Co-expressed in Rare Human Pituitary Corticotroph Cell Adenomas Proposed to Originate from ACTH-Committed Early Pituitary Progenitor Cells

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

The functional differentiation of pituitary cells and adenomas follows the combination of transcription factors and co-factors in three cell lineages [growth hormone–prolactin–thyroid-stimulating hormone lineage, adrenocorticotrophic hormone (ACTH)/pro-opiomelanocortin (POMC) lineage, and follicular stimulating hormone (FSH)/luteinizing hormone (LH) lineage], which include Pit-1, GATA-2, SF-1, NeuroD1/beta2, Tpit, ERα, and others. Only rarely are hormones from different lineages co-expressed in the same adenoma cells. Most corticotroph cell adenomas belonging to the ACTH/POMC lineage are mono-hormonal. In our study of 89 corticotroph cell adenomas, 5 cases expressed both ACTH and alpha-subunit; these adenomas did not express any other anterior pituitary hormones or subunits. To clarify the mechanism involved, we studied the transcription factors that regulate pituitary cell differentiation. NeuroD1 and T-pit, markers of the ACTH/POMC lineage, and SF-1 and DAX-1, related to the LH/FSH cell lineage were expressed in all cases. GATA2, a synergistic factor in the gonadotroph cell lineage with SF-1, was also expressed in three of five cases. As ACTH and alpha-subunit are the earliest hormones to appear during development, we speculate that these particular adenomas are derived from committed ACTH progenitor cells. The molecular process governing functional differentiation of these adenomas requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Asa SL, Bamberger AM, Cao B, Wong M, Parker KL, Ezzat S. The transcription activator steroidogenic factor-1 is preferentially expressed in the human pituitary gonadotroph. J Clin Endocrinol Metab 81:2165–70, 1996.

    Article  PubMed  CAS  Google Scholar 

  2. Asa SL, Puy LA, Lew AM, Sundmark VC, Elsholtz HP. Cell type-specific expression of the pituitary transcription activator pit-1 in the human pituitary and pituitary adenomas. J Clin Endocrinol Metab 77:1275–80, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Aylwin SJ, Welch JP, Davey CL, Geddes JF, Wood DF, Besser GM, et al. The relationship between steroidogenic factor 1 and DAX-1 expression and in vitro gonadotropin secretion in human pituitary adenomas. J Clin Endocrinol Metab 86:2476–83, 2001.

    Article  PubMed  CAS  Google Scholar 

  4. Ferretti E, Di Stefano D, Zazzeroni F, Gallo R, Fratticci A, Carfagnini R, et al. Human pituitary tumours express the bHLH transcription factors NeuroD1 and ASH1. J Endocrinol Invest 26:957–65, 2003.

    PubMed  CAS  Google Scholar 

  5. Friend KE, Chiou YK, Lopes MB, Laws ER Jr, Hughes KM, Shupnik MA. Estrogen receptor expression in human pituitary: correlation with immunohistochemistry in normal tissue, and immunohistochemistry and morphology in macroadenomas. J Clin Endocrinol Metab 78:1497–504, 1994.

    Article  PubMed  CAS  Google Scholar 

  6. Ikuyama S, Mu YM, Ohe K, Nakagaki H, Fukushima T, Takayanagi R, et al. Expression of an orphan nuclear receptor DAX-1 in human pituitary adenomas. Clin Endocrinol (Oxf) 48:647–54, 1998.

    Article  CAS  Google Scholar 

  7. La Rosa S, Celato N, Uccella S, Capella C. Detection of gonadotropin-releasing hormone receptor in normal human pituitary cells and pituitary adenomas using immunohistochemistry. Virchows Arch 437:264–9, 2000.

    Article  PubMed  Google Scholar 

  8. Lamolet B, Poulin G, Chu K, Guillemot F, Tsai MJ, Drouin J. Tpit-independent function of NeuroD1(BETA2) in pituitary corticotroph differentiation. Mol Endocrinol 18:995–1003, 2004.

    Article  PubMed  CAS  Google Scholar 

  9. Matsuno A, Katakami H, Nagashima T, Teramoto A, Osamura RY, Kirino T. Growth hormone-releasing hormone expression in pituitary somatotroph adenomas, studied by immunohistochemistry and in situ hybridization using catalyzed signal amplification system. Hum Pathol 31:789–94, 2000.

    Article  PubMed  CAS  Google Scholar 

  10. Miller GM, Alexander JM, Klibanski A. Gonadotropin-releasing hormone messenger RNA expression in gonadotroph tumors and normal human pituitary. J Clin Endocrinol Metab 81:80–3, 1996.

    Article  PubMed  CAS  Google Scholar 

  11. Oyama K, Sanno N, Teramoto A, Osamura RY. Expression of neuro D1 in human normal pituitaries and pituitary adenomas. Mod Pathol 14:892–9, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Sanno N, Teramoto A, Matsuno A, Itoh J, Takekoshi S, Osamura RY. In situ hybridization analysis of Pit-1 mRNA and hormonal production in human pituitary adenomas. Acta Neuropathol (Berl) 91:263–8, 1996.

    Article  CAS  Google Scholar 

  13. Umeoka K, Sanno N, Osamura RY, Teramoto A. Expression of GATA-2 in human pituitary adenomas. Mod Pathol 15:11–7, 2002.

    Article  PubMed  Google Scholar 

  14. Zafar M, Ezzat S, Ramyar L, Pan N, Smyth HS, Asa SL. Cell-specific expression of estrogen receptor in the human pituitary and its adenomas. J Clin Endocrinol Metab 80:3621–7, 1995.

    Article  PubMed  CAS  Google Scholar 

  15. Osamura RY, Watanabe K. Immunohistochemical studies of human FSH producing pituitary adenomas. Virchows Arch A Pathol Anat Histopathol 413:61–8, 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Sano T, Kovacs K, Asa SL, Smyth HS. Immunoreactive luteinizing hormone in functioning corticotroph adenomas of the pituitary. Immunohistochemical and tissue culture studies of two cases. Virchows Arch A Pathol Anat Histopathol 417:361–7, 1990.

    Article  PubMed  CAS  Google Scholar 

  17. Egensperger R, Scheithauer BW, Horvath E, Kovacs K, Giannini C, Young WF, et al. Cushing’s disease due to plurihormonal adrenocorticotropic hormone and gonadotropin-producing pituitary adenoma. Acta Neuropathol (Berl) 102:398–403, 2001.

    CAS  Google Scholar 

  18. Ikeda H, Yoshimoto T, Kovacs K, Horvath E. Cushing’s disease due to female gonadotroph adenoma of the pituitary. Clin Endocrinol (Oxf) 43:383–6, 1995.

    Article  CAS  Google Scholar 

  19. Osamura RY. Functional prenatal development of anencephalic and normal anterior pituitary glands. In human and experimental animals studied by peroxidase-labeled antibody method. Acta Pathol Jpn 27(4):495–509, 1977.

    PubMed  CAS  Google Scholar 

  20. Asa SL, Kavacs K, Laszlo FA, Domokos I, Ezrin C. Human fetal adenohypophysis histogeic and immunocytochemical analysis. Neuroendocrinology 43(3):308–16, 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Berg KK, Scheithauer BW, Felix I, Kovacs K, Horvath E, Klee GG, et al. Pituitary adenomas that produce adrenocorticotropic hormone and alpha-subunit: clinicopathological, immunohistochemical, ultrastructural, and immunoelectron microscopic studies in nine cases. Neurosurgery 26:397–403, 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Desai B, Burrin JM, Nott CA, Geddes JF, Lamb EJ, Aylwin SJ, et al. Glycoprotein hormone alpha-subunit production and plurihormonality in human corticotroph tumours—an in vitro and immunohistochemical study. Eur J Endocrinol 133:25–32, 1995.

    Article  PubMed  CAS  Google Scholar 

  23. Osamura RY, Watanabe K. Immunohistochemical colocalization of growth hormone (GH) and α subunit in human GH secreting pituitary adenomas. Virchows Archiv A 411:323–30, 1987.

    Article  CAS  Google Scholar 

  24. Xu B, Sano A, Yamada S, Li CC, Hirokawa M. Expression of corticotrophin-releasing hormone messenger ribonucleic acid in human pituitary corticotroph adenomas associated with proliferative potential. J Clin Endocrinol Metab 85(3):1220–5, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Losa M, Barzanghi RL, Mortini P, Franzin A, Mangili F, Terreni MR, et al. Determination of the proliferation and apoptotic index in adrenocorticotropin-secreting pituitary tumors: comparison between micro- and macroadenomas. Am J Pathol 156(1):245–51, 2000.

    PubMed  CAS  Google Scholar 

  26. Mastronardi L, Guiducci A, Spera C, Puzzilli F, Liberati F, Ruggeri A, et al. Adrenocorticotropic hormone secreting pituitary adenomas: analysis of growth fraction using the MIB-1 antibody. Tumori 86(3):229–32, 2000.

    PubMed  CAS  Google Scholar 

  27. Mastronardi L, Guiducci A, Spera C, Puzzilli F, Liberati F, Maira G. Ki-67 labelling index and invasiveness among anterior pituitary adenomas: analysis of 103 cases using the MIB-1 monoclonal antibody. J Clin Pathol 52(2):107–11, 1999.

    PubMed  CAS  Google Scholar 

  28. Tahara S, Kurotani R, Ishii Y, Sanno N, Teramoto A, Osamura RY. A case of Cushing’s disease caused by pituitary adenoma producing adrenocorticotropic hormone and growth hormone concomitantly: aberrant expression of transcription factors NeuroD1 and Pit-1 as a proposed mechanism. Mod Pathol 15(10):1102–5, 2002.

    Article  PubMed  Google Scholar 

  29. Kurotani R, Yoshimura S, Iwasaki Y, Inoue K, Teramoto A, Osamura RY. Exogenous expression of Pit-1 in AtT-20 corticotropic cells induces endogenous growth hormone gene transcription. J Endocrinol 172:477–87, 2002.

    Article  PubMed  CAS  Google Scholar 

  30. Barnhart KM, Mellon PL. The orphan nuclear receptor, steroidogenic factor-1, regulates the glycoprotein hormone alpha-subunit gene in pituitary gonadotropes. Mol Endocrinol 8:878–85, 1994.

    Article  PubMed  CAS  Google Scholar 

  31. Osamura RY, Tahara S, Komatsubara K, Itoh Y, Kajiwara H, Kurotani R, et al. Pit-1 positive alpha-subunit positive nonfunctioning human pituitary adenomas: a dedifferentiated GH cell lineage? Pituitary 1:269–71, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Delegeane AM, Ferland LH, Mellon P. Tissue specific enhancer of the human glycoprotein hormone a subunit gene: dependence on cAMP inducible elements. Mol Cell Biol 7:3994–4002, 1987.

    PubMed  CAS  Google Scholar 

  33. Pulichino AM, Vallette Kasic S, Tsai JP, Couture C, Gauthier Y, Drouin J. Tpit determines alternate fates during pituitary cell differentiation. Genes Dev 17:738–47, 2003.

    Article  PubMed  CAS  Google Scholar 

  34. Raetzman LT, Ross SA, Cook S, Dunwoodie SL, Camper SA, Thomas PQ. Developmental regulation of Notch signaling genes in the embryonic pituitary: Prop1 deficiency affects Notch2 expression. Dev Biol 265(2):329–40, 2004.

    Article  PubMed  CAS  Google Scholar 

  35. Raetzman LT, Wheeler BS, Ross SA, Thomas PQ, Camper SA. Persistent expression of Notch2 delays gonadotrope differentiation. Mol Endocrinol 20(11):2898–908, 2006.

    Article  PubMed  CAS  Google Scholar 

  36. Ishii Y, Suzuki M, Takekoshi S, Egashira N, Yamazaki M, Miyai S, et al. Immunonegative “null cell” adenomas and gonadotropin (Gn) subunit (SUs) immunopositive adenomas share frequent expression of multiple transcription factors. Endocr Pathol 17:35–43, 2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research Projects (B, 16390110 and 16790836) of the Ministry of Education Culture, Sports, Science and Technology, Japan, and by the Research on Measures for Intractable Diseases Project of the Hypothalamo-Pituitary Dysfunction Research Group of the Ministry of Health, Labor and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Yoshiyuki Osamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, M., Egashira, N., Kajiya, H. et al. ACTH and α-Subunit are Co-expressed in Rare Human Pituitary Corticotroph Cell Adenomas Proposed to Originate from ACTH-Committed Early Pituitary Progenitor Cells. Endocr Pathol 19, 17–26 (2008). https://doi.org/10.1007/s12022-008-9014-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-008-9014-6

Keywords

Navigation