Skip to main content
Log in

Secretory Mechanisms and Ca2+ Signaling in Gametes: Similarities to Regulated Neuroendocrine Secretion in Somatic Cells and Involvement in Emerging Pathologies

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Recent studies demonstrate that regulated secretion in probably all mammalian cells, from gonadotropes to gametes, utilizes similar signaling systems, intracellular Ca2+ regulation, Ca2+-dependent proteins, cytoskeletal participation, and SNARE-mediated fusion. Thus, highly specialized cells, like sperm and eggs, should no longer be considered to have evolved a cell-type specific secretory mechanism. In gametes, Ca2+-dependent proteins and enzymes transduce elevations of intracellular Ca2+ into secretory events, i.e., exocytosis of the acrosome in sperm and cortical granules in the egg. Just as secretory deficiencies have clinical consequences in endocrine and exocrine cells, failure of secretion of cortical granules or the acrosome can result in failure of normal fertilization or fertilization followed by abnormal development. With the advent of human in vitro fertilization, such gamete pathologies have been recently identified and have led to new clinical procedures to achieve normal fertilization and pregnancies. A better understanding of the common Ca2+-dependent secretory pathways in both gametes and somatic cells should be beneficial to investigating mis-regulation in either cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dong J, Albertini D, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531–35, 1996.

    CAS  PubMed  Google Scholar 

  2. Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction 122:829–38, 2001.

    CAS  PubMed  Google Scholar 

  3. Carabatsos MJ, Elvin J, Matzuk MM, Albertini DF. Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice. Dev Biol 204:373–84, 1998.

    CAS  PubMed  Google Scholar 

  4. Latham KE, Wigglesworth K, McMenamin M, Eppig JJ. Stage-dependent effects of oocytes and growth differentiation factor 9 on mouse granulosa cell development: advance programming and subsequent control of the transition from preantral secondary follicles to early antral tertiary follicles. Biol Reprod 70:1253–262, 2004.

    CAS  PubMed  Google Scholar 

  5. Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol 13:1018–34, 1999.

    CAS  PubMed  Google Scholar 

  6. Pangas SA, Matzuk MM. The art and artifact of GDF9 activity: cumulus expansion and the cumulus expansion-enabling factor. Biol Reprod 73:582–85, 2005.

    CAS  PubMed  Google Scholar 

  7. Su YQ, Wu X, O’Brien MJ, Pendola, FL, Denegre, JN, Matzuk MM, et al. Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol 276:64–73, 2004.

    CAS  PubMed  Google Scholar 

  8. Buccione R, Schroeder AC, Eppig JJ. Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol Reprod 43:543–47, 1990.

    CAS  PubMed  Google Scholar 

  9. Roy A, Matzuk MM. Deconstructing mammalian reproduction: using knockouts to define fertility pathways. Reproduction 131:207–19, 2006.

    CAS  PubMed  Google Scholar 

  10. Pangas SA, Matzuk MM. Genetic models for transforming growth beta superfamily signaling in ovarian follicle development. Mol Cell Endocrinol 225:83–91, 2004.

    CAS  PubMed  Google Scholar 

  11. Sugiura K, Eppig JJ. Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Reprod Fertil Dev 17:667–74, 2005.

    CAS  PubMed  Google Scholar 

  12. Sugiura K, Pendola FL, Eppig JJ. Oocyte control of metabolic cooperativity between oocytes and companion granulose cells: energy metabolism. Dev Biol 279:20–30, 2005.

    CAS  PubMed  Google Scholar 

  13. Djakiew D, Dym M. Pachytene spermatocyte proteins influence Sertoli cell function. Biol Reprod 39:1193–205, 1988.

    CAS  PubMed  Google Scholar 

  14. Kierszenbaum AL. Mammalian spermatogenesis in vivo and in vitro: a partnership of spermatogenic and somatic cell lineages. Endocr Rev 15:116–34, 1994.

    CAS  PubMed  Google Scholar 

  15. Schlatt S, Meinhardt A, Nieschlag E. Paracrine regulation of cellular interactions in the testis: factors in search of a function. Eur J Endocrinol 137:107–17, 1997.

    CAS  PubMed  Google Scholar 

  16. Ryu BY, Kubota H, Avarbock MR, Brinster RL. Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci U S A 102:14302–7, 2005.

    CAS  PubMed  Google Scholar 

  17. Perrard MH, Vigier M, Damestoy A, Chapat C, Silandre D, Rudkin BB, et al. beta-Nerve growth factor participates in an auto/paracrine pathway of regulation of the meiotic differentiation of rat spermatocytes. J Cell Physiol 210:51–62, 2007.

    CAS  PubMed  Google Scholar 

  18. Pentikainen V, Erkkila K, Suomalainen L, Otala M, Pentikainen MO, Parvinen M, et al. TNFalpha down-regulates the Fas ligand and inhibits germ cell apoptosis in the human testis. J Clin Endocrinol Metab 86:4480–8, 2001.

    CAS  PubMed  Google Scholar 

  19. Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287:1489–93, 2000.

    CAS  PubMed  Google Scholar 

  20. Hofmann MC, Braydich-Stolle L, Dym M. Isolation of male germ-line stem cells; influence of GDNF. Dev Biol 279:114–24, 2005.

    CAS  PubMed  Google Scholar 

  21. Braydich-Stolle L, Kostereva N, Dym M, Hofmann MC. Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation. Dev Biol 304:34–45, 2004.

    Google Scholar 

  22. Oatley JM, Avarbock MR, Telaranta AI, Fearon DT, Brinster RL. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci U S A 103:9751–2, 2006.

    Google Scholar 

  23. Florman H, Wassarman PM. O-linked oligosaccharides of mouse egg ZP3 account for its sperm receptor activity. Cell 41:313–24, 1985.

    CAS  PubMed  Google Scholar 

  24. Bleil JD, Wassarman PM. Sperm–egg interactions in the mouse: sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein. Dev Biol 95:317–24, 1983.

    CAS  PubMed  Google Scholar 

  25. Baibakov B, Gauthier L, Talbot P, Rankin TL, Dean J. Sperm binding to the zona pellucida is not sufficient to induce acrosome exocytosis. Development 134:933–43, 2007.

    Google Scholar 

  26. Yanagimachi R. Mammalian Fertilization. In: Knobil E, Neill JD, eds. The Physiology of Reproduction. 2nd ed. New York, NY: Raven, pp. 189–317, 1994.

    Google Scholar 

  27. Wassarman PM, Jovine L, Litscher ES. A profile of fertilization in mammals. Nat Cell Biol 3:E59–64, 2001.

    CAS  PubMed  Google Scholar 

  28. Florman H, Ducibella T. Fertilization in Mammals. In: Neill JD, editors. Knobil and Neill’s Physiology of Reproduction. 3rd ed. St. Louis, MO: Elsevier Academic, p. 55–112, 2006.

    Google Scholar 

  29. Wassarman P. The biology and chemistry of fertilization. Science 235:553–60, 1987.

    CAS  PubMed  Google Scholar 

  30. Hoodbhoy T, Talbot P. Mammalian cortical granules: contents, fate, and function. Mol Reprod Dev 39:439–48, 1994.

    CAS  PubMed  Google Scholar 

  31. Hoodbhoy T, Dean J. Insights into the molecular basis of sperm–egg recognition in mammals. Reproduction 127:417–22, 2004.

    CAS  PubMed  Google Scholar 

  32. Berridge MJ, Bootman MD, Lipp P. Calcium—a life and death signal. Nature 395:645–48, 1998.

    CAS  PubMed  Google Scholar 

  33. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol 1:11–21, 2000.

    CAS  PubMed  Google Scholar 

  34. Berridge MJ, Bootman MD, Roderick HL. Calcium signaling: dynamics, homeostasis and remodeling. Nature Rev Mol Cell Biol 4:517–29, 2003.

    CAS  Google Scholar 

  35. Whitfield J. Calcium: a cell cycle driver. In: Whitfield, editors. Calcium: Cell Cycle Driver, Differentiator and Killer. Texas: Landes Biosciences. p. 22–55, 1997.

    Google Scholar 

  36. Dellis O, Dedos SG, Tovey SC, Taufiq-Ur-Rahman, Dubel SJ, Taylor CW. Ca2+ entry through plasma membrane IP3 receptors. Science 313:229–33, 2006.

    CAS  PubMed  Google Scholar 

  37. Tse FW, Tse A. Regulation of exocytosis via release of Ca2+ from intracellular stores. Bioessays 21:861–65, 1999.

    CAS  PubMed  Google Scholar 

  38. Swann K, Lai FA. A novel signaling mechanism for generating Ca2+ oscillations at fertilization in mammals. Bioessays 19:371–78, 1997.

    CAS  PubMed  Google Scholar 

  39. Swann K, Larman MG, Saunders CM, Lai FA. The cytosolic sperm factor that triggers Ca2+ oscillations and egg activation in mammals is a novel phospholipase C: PLCzeta. Reproduction 127:431–39, 2004.

    CAS  PubMed  Google Scholar 

  40. Knott JG, Kurokawa M, Fissore RA. Release of the Ca2+ oscillation-inducing sperm factor during mouse fertilization. Dev Biol 260:536–47, 2003.

    CAS  PubMed  Google Scholar 

  41. Miyazaki S, Shirakawa H, Nakada K, Honda Y. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations are fertilization of mammalian eggs. Dev Biol 158:62–78, 1993.

    CAS  PubMed  Google Scholar 

  42. Kline D, Kline JT. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev Biol 149:80–9, 1992.

    CAS  PubMed  Google Scholar 

  43. Sato K, Tokmakov AA, Iwasaki T, Fukami Y. Tyrosine kinase-dependent activation of phospholipase C is required for calcium transient in Xenopus egg fertilization. Dev Biol 224:453–69, 2000.

    CAS  PubMed  Google Scholar 

  44. Wu H, Smyth J, Luzzi V, Fukami K, Takenawa T, Black SL, et al. Sperm factor induces intracellular free calcium oscillations by stimulating the phosphoinositide pathway. Biol Reprod 64:1338–49, 2001.

    CAS  PubMed  Google Scholar 

  45. Xu Z, Kopf GS, Schultz RM. Involvement of inositol 1,4,5-trisphosphate-mediated Ca2+ release in early and late events of mouse egg activation. Development 120:1851–9, 1994.

    CAS  PubMed  Google Scholar 

  46. Xu Z, Lefevre L, Ducibella T, Schultz RM, Kopf GS. Effects of calcium-BAPTA buffers and the calmodulin antagonist W-7 on mouse egg activation. Dev Biol 180:594–604, 1996.

    CAS  PubMed  Google Scholar 

  47. Ducibella T. The cortical reaction and development of activation competence in mammalian oocytes. Hum Reprod Update 2:29–42, 1996.

    CAS  PubMed  Google Scholar 

  48. Morgan A, Burgoyne RD. Common mechanisms for regulated exocytosis in the chromaffin cell and the synapse. Semin Cell Dev Biol 8:141–9, 1997.

    CAS  PubMed  Google Scholar 

  49. Henkel AW, Kang G, Kornhuber J. A common molecular machinery for exocytosis and the ‘kiss-and-run’ mechanism in chromaffin cells is controlled by phosphorylation. J Cell Sci 114:4613–20, 2001.

    CAS  PubMed  Google Scholar 

  50. O’Toole CM, Arnoult C, Darszon A, Steinhardt RA, Florman HM. Ca2+ entry through store-operated channels in mouse sperm is initiated by egg ZP3 and drives the acrosome reaction. Mol Biol Cell 11:1571–84, 2000.

    CAS  PubMed  Google Scholar 

  51. Darszon A, Acevedo JJ, Galindo BE, Hernandez-Gonzales EO, Nishigaki T, Trevino CL, et al. Sperm channel diversity and functional multiplicity. Reproduction 131:977–88, 2006.

    CAS  PubMed  Google Scholar 

  52. Arnoult C, Kazam IG, Visconti PE, Kopf GS, Villaz M, Florman HM. Control of the low voltage-activated calcium channel of mouse sperm by egg ZP3 and by membrane hyperpolarization during capacitation. Proc Natl Acad Sci U S A 96:6757–62, 1999.

    CAS  PubMed  Google Scholar 

  53. Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, Florman HM. Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 3:499–502, 2001.

    CAS  PubMed  Google Scholar 

  54. Herrick SB, Schweissinger DL, Kim SW, Bayan KR, Mann S, Cardullo RA. The acrosomal vesicle of mouse sperm is a calcium store. J Cell Physiol 202:663–71, 2005.

    CAS  PubMed  Google Scholar 

  55. Walensky LD, Snyder SH. Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosomes of mammalian sperm. J Cell Biol 130:857–69, 1995.

    CAS  PubMed  Google Scholar 

  56. Mahapatra NR, Mahata M, Hazra PP, McDonough PM, O’Connor DT, Mahata SK. A dynamic pool of calcium in catecholamine storage vesicles. J Biol Chem 279:51107–121, 2004.

    CAS  PubMed  Google Scholar 

  57. Fukami K, Nakao K, Inoue T, Kataoka Y, Kurokawa M, Fissore RA, et al. Requirement of phospholipase Cdelta4 for the zona pellucida-induced acrosome reaction. Science 292:920–23, 2001.

    CAS  PubMed  Google Scholar 

  58. Sudhof TC. The synaptic vesicle cycle: a cascade of protein–protein interactions. Nature 375:645–53, 1995.

    CAS  PubMed  Google Scholar 

  59. Barclay JW, Morgan A, Burgoyne RD. Calcium-dependent regulation of exocytosis. Cell Calcium 38:343–53, 2005.

    CAS  PubMed  Google Scholar 

  60. Jahn R, Scheller RH. SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–43, 2006.

    CAS  PubMed  Google Scholar 

  61. Burgoyne RD, Morgan A. Analysis of regulated exocytosis in adrenal chromaffin cells: insights into NSF/SNAP/SNARE function. Bioessays 20:328–35, 1998.

    CAS  PubMed  Google Scholar 

  62. Greengard P, Valtorta F, Czernik A, Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259:780–85, 1993.

    CAS  PubMed  Google Scholar 

  63. Chi P, Greengard P, Ryan TA. Synapsin dispersion and reclustering during synaptic activity. Nat Neurosci 4:1187–93, 2001.

    CAS  PubMed  Google Scholar 

  64. Chi P, Greengard P, Ryan TA. Synaptic vesicle mobilization is required by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38:69–78, 2003.

    CAS  PubMed  Google Scholar 

  65. Ryan TA. Inhibitors of myosin light-chain kinase block synaptic vesicle pool mobilization during action potential firing. J Neurosci 19:1317–23, 1999.

    CAS  PubMed  Google Scholar 

  66. Bhatt HS, Conner BP, Prasanna G, Yorio T, Easom RA. Dependence of insulin secretion from permeabilized pancreatic beta-cells on activation of Ca2+/calmodulin-dependent protein kinase II. Biochem Pharm 60:1655–63, 2000.

    CAS  PubMed  Google Scholar 

  67. Salli U, Supancic S, Stormshak F. Phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) protein is associated with bovine luteal oxytocin exocytosis. Biol Reprod 63:12–20, 2000.

    CAS  PubMed  Google Scholar 

  68. Cheviet S, Coppola T, Haynes LP, Burgoyne RD, Regazzi R. The Rab-binding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis. Mol Endocrinol 18:117–126, 2003.

    PubMed  Google Scholar 

  69. Valentijn JA, Valentijn K, Pastore LM, Jamieson JD. Actin coating of secretory granules during regulated exocytosis correlates with the release of rab3D. Proc Natl Acad Sci U S A 97:1091–5, 2000.

    CAS  PubMed  Google Scholar 

  70. Tatone C, Delle Monache S, Iorio R, Caserta D, Di Cola M, Colonna R. Possible role for Ca2+ calmodulin-dependent protein kinase II as an effector of the fertilization Ca2+ signal in mouse oocyte activation. Mol Hum Reprod 8:750–7, 2002.

    CAS  PubMed  Google Scholar 

  71. Matson S, Markoulaki S, Ducibella T. Antagonists of myosin light chain kinase and of myosin II inhibit specific events of egg activation in fertilized mouse eggs. Biol Reprod 74:169–76, 2006.

    CAS  PubMed  Google Scholar 

  72. Weeds A, Maciver S. F-actin capping proteins. Curr Opin Cell Biol 5:63–9, 1993.

    CAS  PubMed  Google Scholar 

  73. Ducibella T, Huneau D, Angelichio E, Xu Z, Schultz RM, Kopf GS, et al. Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Dev Biol 250:280–91, 2002.

    CAS  PubMed  Google Scholar 

  74. Ducibella T, Schultz RM, Ozil JP. Role of calcium signals in early development. Semin Cell Dev Biol 17:324–32, 2006.

    CAS  PubMed  Google Scholar 

  75. Tse A, Hille B. GnRH-induced Ca2+ oscillations and rhythmic hyperpolarizations of pituitary gonadotropins. Science 255:462–4, 1992.

    CAS  PubMed  Google Scholar 

  76. Tse A, Tse FW, Almers W, Hille B. Rhythmic exocytosis stimulated by GnRH-induced calcium oscillations in rat gonadotropes. Science 260:82–4, 1993.

    CAS  PubMed  Google Scholar 

  77. Grundschober C, Malosio ML, Astolfi L, Giordano T, Nef P, Meldolesi J. Neurosecretion competence: a comprehensive gene expression program identified in PC12 cells. J Biol Chem 2787:36715–24, 2002.

    Google Scholar 

  78. Abbott AL, Ducibella T. Calcium and the control of mammalian cortical granule exocytosis. Front Biosci 6:d792–806, 2001.

    CAS  PubMed  Google Scholar 

  79. Abbott AL, Fissore RA, Ducibella T. Incompetence of preovulatory mouse oocytes to undergo cortical granule exocytosis following induced calcium oscillations. Dev Biol 207:38–48, 1999.

    CAS  PubMed  Google Scholar 

  80. Abbott AL, Fissore RA, Ducibella T. Identification of a translocation deficiency in cortical granule secretion in preovulatory mouse oocytes. Biol Reprod 65:1640–7, 2001.

    CAS  PubMed  Google Scholar 

  81. Bennett MK, Scheller RH. Molecular correlates of synaptic vesicle docking and fusion. Curr Opin Neurobiol 4:324–9, 1994.

    CAS  PubMed  Google Scholar 

  82. Ferro-Novick S, Jahn R. Vesicle fusion from yeast to man. Nature 370:191–3, 1994.

    CAS  PubMed  Google Scholar 

  83. Rothman JE, Orci L. Molecular dissection of the secretory pathway. Nature 355:409–15, 1992.

    CAS  PubMed  Google Scholar 

  84. Meldolesi J, Chieregatti E. Fusion has found its calcium sensor. Nat Cell Biol 6:476–8, 2004.

    CAS  PubMed  Google Scholar 

  85. Gratzl M, Breckner M, Prinz C. Mechanisms of storage and exocytosis in neuroendocrine tumors. Endocr Pathol 15:1–16, 2004.

    PubMed  Google Scholar 

  86. Conner S, Leaf D, Wessel G. Members of the SNARE hypothesis are associated with cortical granule exocytosis in the sea urchin egg. Mol Reprod Dev 48:106–18, 1997.

    CAS  PubMed  Google Scholar 

  87. Avery J, Hodel A, Whitaker M. In vitro exocytosis in sea urchin eggs requires a synaptobrevin-related protein. J Cell Sci 110:1555–61, 1997.

    CAS  PubMed  Google Scholar 

  88. Conner SD, Wessel GM. Syntaxin is required for cell division. Mol Biol Cell 10:2735–43, 1999.

    CAS  PubMed  Google Scholar 

  89. Wessel GM, Brooks JM, Green E, Haley S, Voronina E, Wong J, et al. The biology of cortical granules. Int Rev Cytol 209:117–206, 2001.

    Article  CAS  PubMed  Google Scholar 

  90. Coorssen JR, Blank PS, Albertorio F, Bezrukov L, Kolosova I, Chen X, et al. Regulated secretion: SNARE density, vesicle fusion and calcium dependence. J Cell Sci 116:2087–97, 2003.

    CAS  PubMed  Google Scholar 

  91. Conner S, Wessel GM. Rab3 mediates cortical granule exocytosis in the sea urchin egg. Dev Biol 203:334–44, 1998.

    CAS  PubMed  Google Scholar 

  92. Leguia M, Conner S, Berg L, Wessel GM. Synaptotagmin I is involved in the regulation of cortical granule exocytosis in the sea urchin. Mol Reprod Dev 73:895–905, 2006.

    CAS  PubMed  Google Scholar 

  93. Ikebuchi Y, Masumoto N, Matsuoka T, Yokoi T, Tahara M, Tasaka K, et al. SNAP-25 is essential for cortical granule exocytosis in mouse eggs. Am J Physiol 274:C1496–500, 1998.

    CAS  PubMed  Google Scholar 

  94. Gonzalez L Jr, Scheller RH. Regulation of membrane trafficking: structural insights from a Rab/effector complex. Cell 96:755–8, 1999.

    CAS  PubMed  Google Scholar 

  95. Chung SH, Takai Y, Holz RW. Evidence that the Rab3a-binding protein, rabphilin 3a, enhances regulated secretion: studies in adrenal chromaffin cells. J Biol Chem 270:16714–18, 1995.

    CAS  PubMed  Google Scholar 

  96. Geppert M, Sudhof TC. RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu Rev Neurosci 21:75–95, 1998.

    CAS  PubMed  Google Scholar 

  97. Komuro R, Sasaki T, Orita S, Maeda M, Takai Y. Involvement of rabphilin-3A in Ca2+-dependent exocytosis from PC12 cells. Biochem Biophys Res Commun 219:435–40, 1996.

    CAS  PubMed  Google Scholar 

  98. Masumoto N, Sasaki T, Tahara M, Mammoto A, Ikebuchi Y, Tasaka K, et al. Involvement of Rabphilin-3A in cortical granule exocytosis in mouse eggs. J Cell Biol 135:1741–7, 1996.

    CAS  PubMed  Google Scholar 

  99. Masumoto N, Ikebuchi Y, Tahara M, Yokoi T, Tasaka K, Miyake A, et al. Expression of Rab3A in the cortical region in mouse metaphase II eggs. J Exp Zool 280:91–6, 1998.

    CAS  PubMed  Google Scholar 

  100. Leguia M, Wessel GM. Selective expression of a sec1/munc18 member in sea urchin eggs and embryos. Gene Expr Patterns 4:645–57, 2004.

    CAS  PubMed  Google Scholar 

  101. Schultz JR, Wessel GM, Vacquier VD. The exocytosis regulatory proteins syntaxin and VAMP are shed from sea urchin sperm during the acrosome reaction. Dev Biol 191:80–7, 1997.

    Google Scholar 

  102. Schultz JR, Sasaki JD, Vacquier VD. Increased association of synaptosome-associated protein of 25 kDa with syntaxin and vesicle-associated membrane protein following acrosomal exocytosis of sea urchin sperm. J Biol Chem 273:24355–9, 1998.

    Google Scholar 

  103. Ramalho-Santos J, Moreno RD, Sutovsky P, Chan AW, Hewitson L, Wessel GM, et al. SNAREs in mammalian sperm: possible implications for fertilization. Dev Biol 223:54–69, 2000.

    CAS  PubMed  Google Scholar 

  104. Hutt DM, Cardullo RA, Baltz JM, Ngsee JK. Synaptotagmin VIII is localized to the mouse sperm head and may function in acrosomal exocytosis. Biol Reprod 66:50–6, 2002.

    CAS  PubMed  Google Scholar 

  105. Michaut M, De Blas G, Tomes CN, Yunes R, Fukada M, Mayorga LS. Synaptotagmin VI participates in the acrosome reaction of human spermatozoa. Dev Biol 235:521–9, 2001.

    CAS  PubMed  Google Scholar 

  106. De Blas GA, Roggero CM, Tomes CN, Mayorga LS. Dynamics of SNARE assembly and disassembly during sperm acrosomal exocytosis. PLoS Biol 3:e323, 2005.

    PubMed  Google Scholar 

  107. Tomes CN, Michaut M, De Blas G, Visconti P, Matti U, Mayorga LS. SNARE complex assembly is required for human sperm acrosome reaction. Dev Biol 243:326–38, 2002.

    CAS  PubMed  Google Scholar 

  108. Michaut M, Tomes CN, De Blas G, Yunes R, Mayorga LS. Calcium-triggered acrosomal exocytosis in human spermatozoa requires the coordinated activation of Rab3A and N-ethylmaleimide-sensitive factor. Proc Natl Acad Sci USA 97:9996–10001, 2000.

    CAS  PubMed  Google Scholar 

  109. Hutt DM, Baltz JM, Ngsee JK. Synaptotagmin VI and VIII and syntaxin 2 are essential for the mouse sperm acrosome reaction. J Biol Chem 280:20197–203, 2005.

    CAS  PubMed  Google Scholar 

  110. Jaffe LA, Gould M. Polyspermy-preventing mechanisms. In: Metz C, Monroy A, editors. Biology of Fertilization. New York, NY: Academic, p. 223–50, 1985.

    Google Scholar 

  111. Boue J, Boue A, Lazar P. The epidemiology of human spontaneous abortions with chromosomal anomalies. In: Blandau R, editors. Aging Gametes: their biology and pathology. New York, NY: S. Karger, p. 330–48, 1975.

    Google Scholar 

  112. Golbus M. Chromosome aberrations and mammalian reproduction. In: Mastroianni L, Biggers J, editors. Fertilization and Embryonic Development in vitro. New York, NY: Plenum, p. 257–72, 1981.

    Google Scholar 

  113. Hammitt D, Syrop C, Van Voorhis B, Walker D, Miller T, Barud K. Maturational asynchrony between oocyte cumulus–coronal morphology and nuclear maturity in gonadotropin-releasing hormone agonist stimulations. Fertil Steril 59:375–81, 1993.

    CAS  PubMed  Google Scholar 

  114. Beatty R. The origin of human triploidy: an integration of qualitative and quantitative evidence. Annals Hum Gen London 41:299–314, 1978.

    CAS  Google Scholar 

  115. Jacobs P, Angell R, Buchanan I, Hassold T, Matsuyama A, Manuel B. The origin of human triploids. Annals Hum Gen London 42:49–57, 1978.

    CAS  Google Scholar 

  116. Kola I, Trounson A. Dispermic human fertilization: violation of expected cell behavior. In: Schatten H, Schatten G, editors. The Cell Biology of Fertilization. New York, NY: Academic, p. 277–93, 1989.

    Google Scholar 

  117. Edwards R. Conception in the Human Female. New York, NY: Academic, 1980.

    Google Scholar 

  118. Hammitt DG, Syrop CH, Van Voorhis BJ, Walker DL, Miller TM, Barud KM, et al. Prediction of nuclear maturity from cumulus–coronal morphology: influence of embryologist experience. J Assist Reprod Gen 9:439–48, 1992.

    CAS  Google Scholar 

  119. Cekleniak NA, Combelles CM, Ganz DA, Fung J, Albertini DF, Racowsky C. A novel system for in vitro maturation of human oocytes. Fertil Steril 75:1185–93, 2001.

    CAS  PubMed  Google Scholar 

  120. Van Blerkom J, Davis PW, Merriam J. The developmental ability of human oocytes penetrated at the germinal vesicle stage after insemination in vitro. Hum Reprod 9:697–708, 1994.

    PubMed  Google Scholar 

  121. Ducibella T, Dubey A, Gross V, Emmi A, Penzias AS, Layman L, et al. A zona biochemical change and spontaneous cortical granule loss in eggs that fail to fertilize in in vitro fertilization. Fertil Steril 64:1154–61, 1995.

    CAS  PubMed  Google Scholar 

  122. Xu Z, Abbott A, Kopf GS, Schultz RM, Ducibella T. Spontaneous activation of ovulated mouse eggs: time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-trisphosphate sensitivity. Biol Reprod 57:743–50, 1997.

    CAS  PubMed  Google Scholar 

  123. Abbott AL, Xu Z, Kopf GS, Ducibella T, Schultz RM. In vitro culture retards spontaneous activation of cell cycle progression and cortical granule exocytosis that normally occur in in vivo unfertilized mouse eggs. Biol Reprod 59:1515–21, 1998.

    CAS  PubMed  Google Scholar 

  124. Tarin JJ, Perez-Albala S, Aguilar A, Minarro J, Hermenegildo C, Cano A. Long-term effects of postovulatory aging of mouse oocytes on offspring: a two-generational study. Biol Reprod 61:1347–55, 1999.

    CAS  PubMed  Google Scholar 

  125. Gordo AC, Rodrigues P, Kurokawa M, Jellerette T, Exley GE, Warner C, et al. Intracellular calcium oscillations signal apoptosis rather than activation in in vitro aged mouse eggs. Biol Reprod 66:1828–37, 2002.

    CAS  PubMed  Google Scholar 

  126. Fissore RA, Kurkoawa M, Knott J, Zhang M, Smyth J. Mechanisms underlying oocyte activation and postovulatory ageing. Reproduction 124:745–54, 2002.

    CAS  PubMed  Google Scholar 

  127. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340:17–8, 1992.

    CAS  PubMed  Google Scholar 

  128. Liu DY, Garrett C, Baker HW. Clinical application of sperm-oocyte interaction tests in in vitro fertilization—embryo transfer and intracytoplasmic sperm injection programs. Fertil Steril 82:1251–63, 2004.

    PubMed  Google Scholar 

  129. Bastiaan HS, Windt ML, Menkveld R, Kruger TF, Oehninger S, Franken DR. Relationship between zona pellucida-induced acrosome reaction, sperm morphology, sperm-zona pellucida binding, and in vitro fertilization. Fertil Steril 79:49–55, 2003.

    PubMed  Google Scholar 

  130. Franken DR, Bastiaan HS, Oehninger SC. Physiological induction of the acrosome reaction in human sperm: validation of a microassay using minimal volumes of solubilized, homologous zona pellucida. J Assist Reprod Gen 17:156–61, 2000.

    CAS  Google Scholar 

  131. Florman HM, Bechtol KB, Wassarman PM. Enzymatic dissection of the functions of the mouse egg’s receptor for sperm. Dev Biol 106:243–55, 1984.

    CAS  PubMed  Google Scholar 

  132. Liu DY, Baker HW. High frequency of defective sperm-zona pellucida interaction in oligozoospermic infertile men. Hum Reprod 19:228–33, 2004.

    PubMed  Google Scholar 

  133. Liu DY, Baker HW. Frequency of defective sperm-zona pellucida interaction in severely teratozoospermic infertile men. Hum Reprod 18:802–7, 2003.

    PubMed  Google Scholar 

  134. Liu DY, Garrett C, Baker HW. Acrosome-reacted human sperm in insemination medium do not bind to the zona pellucida of human oocytes. Int J Androl 29:475–81, 2006.

    CAS  PubMed  Google Scholar 

  135. Wassarman PM, Jovine L, Litscher ES. A profile of fertilization in mammals. Nat Cell Biol 3:E59–64, 2001.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Mary Ann Handel, John Eppig, and Harvey Florman for comments on specific parts of the manuscript and NICHD for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Ducibella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducibella, T., Matson, S. Secretory Mechanisms and Ca2+ Signaling in Gametes: Similarities to Regulated Neuroendocrine Secretion in Somatic Cells and Involvement in Emerging Pathologies. Endocr Pathol 18, 191–203 (2007). https://doi.org/10.1007/s12022-007-0015-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-007-0015-7

Keywords

Navigation