Skip to main content

Decentralized Multisite VBM Analysis During Adolescence Shows Structural Changes Linked to Age, Body Mass Index, and Smoking: a COINSTAC Analysis

Abstract

There has been an upward trend in developing frameworks that enable neuroimaging researchers to address challenging questions by leveraging data across multiple sites all over the world. One such open-source framework is the Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation (COINSTAC) that works on Windows, macOS, and Linux operating systems and leverages containerized analysis pipelines to analyze neuroimaging data stored locally across multiple physical locations without the need for pooling the data at any point during the analysis. In this paper, the COINSTAC team partnered with a data collection consortium to implement the first-ever decentralized voxelwise analysis of brain imaging data performed outside the COINSTAC development group. Decentralized voxel-based morphometry analysis of over 2000 structural magnetic resonance imaging data sets collected at 14 different sites across two cohorts and co-located in different countries was performed to study the structural changes in brain gray matter which linked to age, body mass index (BMI), and smoking. Results produced by the decentralized analysis were consistent with and extended previous findings in the literature. In particular, a widespread cortical gray matter reduction (resembling a ‘default mode network’ pattern) and hippocampal increase with age, bilateral increases in the hypothalamus and basal ganglia with BMI, and cingulate and thalamic decreases with smoking. This work provides a critical real-world test of the COINSTAC framework in a “Large-N” study. It showcases the potential benefits of performing multivoxel and multivariate analyses of large-scale neuroimaging data located at multiple sites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  • Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.

    Article  Google Scholar 

  • Ashburner, J., & Friston, K.J. (2000). Voxel-based morphometry—the methods. NeuroImage, 11(6), 805–821.

    Article  CAS  Google Scholar 

  • Baker, B.T., Abrol, A., Silva, R.F., Damaraju, E., Sarwate, A.D., Calhoun, V.D., & Plis, S.M. (2019). Decentralized temporal independent component analysis: leveraging fmri data in collaborative settings. NeuroImage, 186, 557–569.

    Article  Google Scholar 

  • Baker, B.T., Damaraju, E., Silva, R.F., Plis, S.M., & Calhoun, V.D. (2020). Decentralized dynamic functional network connectivity: state analysis in collaborative settings. Human Brain Mapping.

  • Beckett, L.A., Donohue, M.C., Wang, C., Aisen, P., Harvey, D.J., Saito, N., Initiative, A.D.N., & et al. (2015). The alzheimer’s disease neuroimaging initiative phase 2: increasing the length, breadth, and depth of our understanding. Alzheimer’s & Dementia, 11(7), 823–831.

    Article  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300.

    Google Scholar 

  • Boldrini, M., Fulmore, C.A., Tartt, A.N., Simeon, L.R., Pavlova, I., Poposka, V., Rosoklija, G.B., Stankov, A., Arango, V., Dwork, A.J., & et al. (2018). Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell, 22(4), 589–599.

    Article  CAS  Google Scholar 

  • Buckner, R.L., Krienen, F.M., & Yeo, B.T. (2013). Opportunities and limitations of intrinsic functional connectivity mri. Nature Neuroscience, 16(7), 832.

    Article  Google Scholar 

  • Button, K.S., Ioannidis, J.P., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S., & Munafò, M.R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365.

    Article  CAS  Google Scholar 

  • Carnell, S., Gibson, C., Benson, L., Ochner, C., & Geliebter, A. (2012). Neuroimaging and obesity: current knowledge and future directions. Obesity Reviews, 13(1), 43–56.

    Article  CAS  Google Scholar 

  • Cronk, B.B., Johnson, D.K., Burns, J.M., Initiative, A.D.N., & et al. (2010). Body mass index and cognitive decline in mild cognitive impairment. Alzheimer Disease and Associated Disorders, 24(2), 126.

    Article  Google Scholar 

  • Eriksson, P.S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D.A., & Gage, F.H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313.

    Article  CAS  Google Scholar 

  • Ewing, S.W.F., Tapert, S.F., & Molina, B.S. (2016). Uniting adolescent neuroimaging and treatment research: recommendations in pursuit of improved integration. Neuroscience & Biobehavioral Reviews, 62, 109–114.

    Article  Google Scholar 

  • Gazula, H., Baker, B., Damaraju, E., Plis, S.M., Panta, S.R., Silva, R.F., & Calhoun, V.D. (2018). Decentralized analysis of brain imaging data: voxel-based morphometry and dynamic functional network connectivity. Frontiers in Neuroinformatics, 12, 55.

    Article  Google Scholar 

  • Gogtay, N., Giedd, J.N., Lusk, L., Hayashi, K.M., Greenstein, D., Vaituzis, A.C., Nugent, T.F., Herman, D.H., Clasen, L.S., Toga, A.W., & et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101(21), 8174–8179.

    Article  CAS  Google Scholar 

  • Gogtay, N., Nugent, T.F. III, Herman, D.H., Ordonez, A., Greenstein, D., Hayashi, K.M., Clasen, L., Toga, A.W., Giedd, J.N., Rapoport, J.L., & et al. (2006). Dynamic mapping of normal human hippocampal development. Hippocampus, 16(8), 664–672.

    Article  Google Scholar 

  • Gunstad, J., Paul, R.H., Cohen, R.A., Tate, D.F., Spitznagel, M.B., Grieve, S., & Gordon, E. (2008). Relationship between body mass index and brain volume in healthy adults. International Journal of Neuroscience, 118(11), 1582–1593.

    Article  Google Scholar 

  • Heatherton, T.F., Kozlowski, L.T., Frecker, R.C., & FAGERSTROM, K.-O. (1991). The fagerström test for nicotine dependence: a revision of the fagerstrom tolerance questionnaire. British Journal Of Addiction, 86(9), 1119–1127.

    Article  CAS  Google Scholar 

  • Holla, B., Bharath, R.D., Venkatasubramanian, G., & Benegal, V. (2019). Altered brain cortical maturation is found in adolescents with a family history of alcoholism. Addiction Biology.

  • Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., & et al. (2019). Advances and open problems in federated learning. arXiv:1912.04977.

  • Kurth, F., Levitt, J.G., Phillips, O.R., Luders, E., Woods, R.P., Mazziotta, J.C., Toga, A.W., & Narr, K.L. (2013). Relationships between gray matter, body mass index, and waist circumference in healthy adults. Human Brain Mapping, 34(7), 1737–1746.

    Article  Google Scholar 

  • Landis, D., Courtney, W., Dieringer, C., Kelly, R., King, M., Miller, B., Wang, R., Wood, D., Turner, J.A., & Calhoun, V.D. (2016). Coins data exchange: an open platform for compiling, curating, and disseminating neuroimaging data. NeuroImage, 124, 1084–1088.

    Article  Google Scholar 

  • Lewis, N., Plis, S., & Calhoun, V. (2017). Cooperative learning: decentralized data neural network. In 2017 international joint conference on neural networks (IJCNN). Anchorage, AK (pp. 324–331).

  • Lewis, N., Gazula, H., Plis, S.M., & Calhoun, V.D. (2020). Decentralized distribution-sampled classification models with application to brain imaging. Journal of Neuroscience Methods, 108418, 329.

    Google Scholar 

  • Li, Q., Wen, Z., & He, B. (2019). Federated learning systems: vision, hype and reality for data privacy and protection. arXiv:1907.09693.

  • Lydon, D.M., Wilson, S.J., Child, A., & Geier, C.F. (2014). Adolescent brain maturation and smoking: what we know and where we’re headed. Neuroscience & Biobehavioral Reviews, 45, 323–342.

    Article  Google Scholar 

  • Mills, K.L., Goddings, A.-L., Herting, M.M., Meuwese, R., Blakemore, S.-J., Crone, E.A., Dahl, R.E., Güroğlu, B., Raznahan, A., Sowell, E.R., & et al. (2016). Structural brain development between childhood and adulthood: convergence across four longitudinal samples. NeuroImage, 141, 273–281.

    Article  Google Scholar 

  • Ming, J., Verner, E., Sarwate, A., Kelly, R., Reed, C., Kahleck, T., Silva, R., Panta, S., Turner, J., Plis, S., & et al. (2017). Coinstac: decentralizing the future of brain imaging analysis. F1000Research, 6, 1512.

    Article  Google Scholar 

  • Plis, S.M., Sarwate, A.D., Wood, D., Dieringer, C., Landis, D., Reed, C., Panta, S.R., Turner, J.A., Shoemaker, J.M., Carter, K.W., & et al. (2016). Coinstac: a privacy enabled model and prototype for leveraging and processing decentralized brain imaging data. Frontiers in Neuroscience, 10, 365.

    Article  Google Scholar 

  • Poldrack, R.A., Barch, D.M., Mitchell, J., Wager, T., Wagner, A.D., Devlin, J.T., Cumba, C., Koyejo, O., & Milham, M. (2013). Toward open sharing of task-based fmri data: the openfmri project. Frontiers in Neuroinformatics, 7, 12.

    Article  Google Scholar 

  • Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., & Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676–682.

    Article  CAS  Google Scholar 

  • Saha, D.K., Calhoun, V.D., Panta, S.R., & Plis, S.M. (2017). See without looking: joint visualization of sensitive multi-site datasets. In Proceedings of the twenty-sixth international joint conference on artificial intelligence (IJCAI’2017). Melbourne, Australia (pp. 2672–2678).

  • Sarwate, A.D., Plis, S.M., Turner, J.A., Arbabshirani, M.R., & Calhoun, V.D. (2014). Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation. Frontiers in Neuroinformatics, 8, 35.

    Article  Google Scholar 

  • Schumann, G., Loth, E., Banaschewski, T., Barbot, A., Barker, G., Büchel, C., Conrod, P., Dalley, J., Flor, H., Gallinat, J., & et al. (2010). The imagen study: reinforcement-related behaviour in normal brain function and psychopathology. Molecular Psychiatry, 15(12), 1128.

    Article  CAS  Google Scholar 

  • Selemon, L.D. (2013). A role for synaptic plasticity in the adolescent development of executive function. Translational Psychiatry, 3(3), e238.

    Article  CAS  Google Scholar 

  • Tamnes, C.K., ØStby, Y., Fjell, A.M., Westlye, L.T., Due-Tønnessen, P., & Walhovd, K.B. (2009). Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. Cerebral Cortex, 20(3), 534–548.

    Article  Google Scholar 

  • Tenopir, C., Allard, S., Douglass, K., Aydinoglu, A.U., Wu, L., Read, E., Manoff, M., & Frame, M. (2011). Data sharing by scientists: practices and perceptions. PloS one, 6(6), e21101.

    Article  CAS  Google Scholar 

  • Thaler, J.P., Yi, C.-X., Schur, E.A., Guyenet, S.J., Hwang, B.H., Dietrich, M.O., Zhao, X., Sarruf, D.A., Izgur, V., Maravilla, K.R., & et al. (2012). Obesity is associated with hypothalamic injury in rodents and humans. The Journal of Clinical Investigation, 122(1), 153–162.

    Article  CAS  Google Scholar 

  • Wierenga, L., Langen, M., Ambrosino, S., van Dijk, S., Oranje, B., & Durston, S. (2014). Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24. NeuroImage, 96, 67–72.

    Article  Google Scholar 

  • Willette, A.A., & Kapogiannis, D. (2015). Does the brain shrink as the waist expands? Ageing Research Reviews, 20, 86–97.

    Article  Google Scholar 

  • Yu, D., Yuan, K., Cheng, J., Guan, Y., Li, Y., Bi, Y., Zhai, J., Luo, L., Liu, B., Xue, T., & et al. (2017). Reduced thalamus volume may reflect nicotine severity in young male smokers. Nicotine and Tobacco Research, 20(4), 434–439.

    Article  Google Scholar 

  • Zhang, Y., Vaidya, N., Iyengar, U., Sharma, E., Holla, B., Ahuja, C.K., Barker, G.J., Basu, D., Bharath, R.D., Chakrabarti, A., Desrivieres, S., Elliott, P., Fernandes, G., Gourisankar, A., Heron, J., Hickman, M., Jacob, P., Jain, S., Jayarajan, D., Kalyanram, K., Kartik, K., Krishna, M., Krishnaveni, G., Kumar, K., Kumaran, K., Kuriyan, R., Murthy, P., Orfanos, D.P., Purushottam, M., Rangaswamy, M., Kupard, S.S., Singh, L., Singh, R., Subodh, B.N., Thennarasu, K., Toledano, M., Varghese, M., Benegal, V., & Schumann, G. (2020). The consortium on vulnerability to externalizing disorders and addictions (c-VEDA): an accelerated longitudinal cohort of children and adolescents in india. Molecular Psychiatry, 25(8), 1618–1630.

    Article  Google Scholar 

  • Zhong, J., Shi, H., Shen, Y., Dai, Z., Zhu, Y., Ma, H., & Sheng, L. (2016). Voxelwise meta-analysis of gray matter anomalies in chronic cigarette smokers. Behavioural Brain Research, 311, 39–45.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Institutes of Health (grants: R01EB005846, 1R01DA040487) and the National Science Foundation (grants: 1539067, 1631819 and CCF-1909468). The study was supported in part by grant LSHM-CT-2007-037286 from the European Union–funded FP6 Integrated Project IMAGEN; the European Research Council Advanced Grant STRATIFY 695313 from the Horizon 2020; grant PR-ST-0416-10004 from the European Research Area Network on Illicit Drugs; grant MR/N027558/1 from BRIDGET (Brain Imaging Cognition Dementia and Next Generation Genomics); the National Institutes of Health (NIH) funded ENIGMA (grants 5U54EB020403-05 and 1R56AG058854-01), the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2). cVEDA is jointly funded by the Indian Council for Medical Research (ICMR/MRC/3/M/2015-NCD-I) and the Newton Grant from the Medical Research Council(MR/N000390/1), United Kingdom. One of the co-authors, BH, was supported by Department of Biotechnology, Government of India grant (BT/PR17316/MED/31/326/2015) for “Accelerating program for discovery in brain disorders using stem cells”. Last but not least, we would like to acknowledge Matt Hickmann (University of Bristol), Mireille B. Toledano (Imperial College London) and Sylvane Desrivieres (King’s College London) for their important contributions to cVEDA.

Author information

Authors and Affiliations

Authors

Contributions

HG implemented the decentralized regression algorithm and led the manuscript writing. BH contributed data and was instrumental in writing up the results and discussion sections. ZZ contributed data to the study as well as contributed to some parts of the writing. EV managed the COINSTAC project, coordinated the analysis, and edited the paper. RK was the lead software developer for the COINSTAC platform. GS is a co-investigator and has been instrumental in facilitating this multi-site study. VC led the team, formed the vision, and helped interpret the results. All others who were not mentioned here are part of either the cVEDA or IMAGEN consortia.

Corresponding authors

Correspondence to Harshvardhan Gazula, Bharath Holla or Vince D. Calhoun.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

Information Sharing Statement

More specific details about accessing the datasets used in the study can be found at Zhang et al. (2020) for cVEDA and Schumann et al. (2010) for IMAGEN. The COINSTAC software can be accessed at https://github.com/trendscenter/coinstac.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Gazula, Bharath Holla and V. Calhoun all contributed equally to this work

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gazula, H., Holla, B., Zhang, Z. et al. Decentralized Multisite VBM Analysis During Adolescence Shows Structural Changes Linked to Age, Body Mass Index, and Smoking: a COINSTAC Analysis. Neuroinform 19, 553–566 (2021). https://doi.org/10.1007/s12021-020-09502-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-020-09502-7

Keywords

  • COINSTAC
  • Decentralized voxel-based morphometry
  • Adolescence