Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification

Abstract

Neurons are diverse and can be differentiated by their morphological, electrophysiological, and molecular properties. Current morphology-based classification approaches largely rely on the dendritic tree structure or on the overall axonal projection layout. Here, we use data from public databases of neuronal reconstructions and membrane properties to study the characteristics of the axonal and dendritic trees for interneuron classification. We show that combining signal propagation patterns observed by biophysical simulations of the activity along ramified axonal trees with morphological parameters of the axonal and dendritic trees, significantly improve classification results compared to previous approaches. The classification schemes introduced here can be utilized for robust neuronal classification. Our work paves the way for understanding and utilizing form-function principles in realistic neuronal reconstructions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Akram, M.A., Nanda, S., Maraver, P., Armañanzas, R, & Ascoli, G.A. (2018). An open repository for single-cell reconstructions of the brain forest. Scientific data, 5, 180006.

    PubMed  PubMed Central  Article  Google Scholar 

  2. Alcami, P., & El Hady, A. (2019). Axonal computations. Frontiers in Cellular Neuroscience, 13, 413.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Angotzi, G.N., Boi, F., Lecomte, A., Miele, E., Malerba, M., Zucca, S., Casile, A., & Berdondini, L. (2019). Sinaps: an implantable active pixel sensor cmos-probe for simultaneous large-scale neural recordings. Biosensors and Bioelectronics, 126, 355–364.

    CAS  PubMed  Article  Google Scholar 

  4. Armañanzas, R, & Ascoli, G.A. (2015). Towards the automatic classification of neurons. Trends in Neurosciences, 38(5), 307–318.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. Avena-Koenigsberger, A., Misic, B., & Sporns, O. (2018). Communication dynamics in complex brain networks. Nature Reviews Neuroscience, 19(1), 17.

    CAS  Article  Google Scholar 

  6. Bakkum, D.J., Obien, M.E.J., Radivojevic, M., Jäckel, D, Frey, U., Takahashi, H., & Hierlemann, A. (2019). The axon initial segment is the dominant contributor to the neuron’s extracellular electrical potential landscape. Advanced Biosystems, 3(2), 1800308.

    Article  Google Scholar 

  7. Bono, J., Wilmes, K.A., & Clopath, C. (2017). Modelling plasticity in dendrites: from single cells to networks. Current Opinion in Neurobiology, 46, 136–141.

    CAS  PubMed  Article  Google Scholar 

  8. Casale, A.E., Foust, A.J., Bal, T., & McCormick, D.A. (2015). Cortical interneuron subtypes vary in their axonal action potential properties. Journal of Neuroscience, 35(47), 15555–15567.

    CAS  PubMed  Article  Google Scholar 

  9. Chen, G., Zhang, Y., Li, X., Zhao, X., Ye, Q., Lin, Y., Tao, H.W., Rasch, M.J., & Zhang, X. (2017). Distinct inhibitory circuits orchestrate cortical beta and gamma band oscillations. Neuron, 96 (6), 1403–1418.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Chevée, M, Robertson, J.D.J., Cannon, G.H., Brown, S.P., & Goff, L.A. (2018). Variation in activity state, axonal projection, and position define the transcriptional identity of individual neocortical projection neurons. Cell Reports, 22(2), 441–455.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. Debanne, D., Campanac, E., Bialowas, A., Carlier, E., & Alcaraz, G. (2011). Axon physiology. Physiological Reviews, 91(2), 555–602.

    CAS  PubMed  Article  Google Scholar 

  12. DeFelipe, J., López-Cruz, P.L., Benavides-Piccione, R., Bielza, C., Larrañaga, P, Anderson, S., Burkhalter, A., Cauli, B., Fairén, A, Feldmeyer, D., & et al. (2013). New insights into the classification and nomenclature of cortical gabaergic interneurons. Nature Reviews Neuroscience, 14(3), 202.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Druckmann, S., Hill, S., Schürmann, F, Markram, H., & Segev, I. (2012). A hierarchical structure of cortical interneuron electrical diversity revealed by automated statistical analysis. Cerebral Cortex, 23(12), 2994–3006.

    PubMed  Article  Google Scholar 

  14. Dumitriu, D., Cossart, R., Huang, J., & Yuste, R. (2006). Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex. Cerebral Cortex, 17(1), 81–91.

    PubMed  Article  Google Scholar 

  15. Emmenegger, V, Qi, G, Wang, H, & Feldmeyer, D. (2018). Morphological and functional characterization of non-fast-spiking gabaergic interneurons in layer 4 microcircuitry of rat barrel cortex. Cerebral Cortex.

  16. Eyal, G., Mansvelder, H.D., de Kock, C.P., & Segev, I. (2014). Dendrites impact the encoding capabilities of the axon. Journal of Neuroscience, 34(24), 8063–8071.

    CAS  PubMed  Article  Google Scholar 

  17. Feldmeyer, D., Qi, G., Emmenegger, V., & Staiger, J.F. (2018). Inhibitory interneurons and their circuit motifs in the many layers of the barrel cortex. Neuroscience, 368, 132–151.

    CAS  PubMed  Article  Google Scholar 

  18. Ferrante, M., Tahvildari, B., Duque, A., Hadzipasic, M., Salkoff, D., Zagha, E.W., Hasselmo, M.E., & McCormick, D.A. (2016). Distinct functional groups emerge from the intrinsic properties of molecularly identified entorhinal interneurons and principal cells. Cerebral Cortex, 27(6), 3186–3207.

    Google Scholar 

  19. Gillette, T.A., & Ascoli, G.A. (2015). Topological characterization of neuronal arbor morphology via sequence representation: I-motif analysis. BMC Bioinformatics, 16(1), 216.

    PubMed  PubMed Central  Article  Google Scholar 

  20. Goldstein, S.S., & Rall, W. (1974). Changes of action potential shape and velocity for changing core conductor geometry. Biophysical Journal, 14(10), 731–757.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Gouwens, N.W., Berg, J., Feng, D., Sorensen, S.A., Zeng, H., Hawrylycz, M.J., Koch, C., & Arkhipov, A. (2018). Systematic generation of biophysically detailed models for diverse cortical neuron types. Nature Communications, 9(1), 710.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. Gouwens, N.W., Sorensen, S.A., Berg, J., Lee, C., Jarsky, T., Ting, J., Sunkin, S.M., Feng, D., Anastassiou, C., Barkan, E., Bickley, K., Blesie, N., Braun, T., Brouner, K., Budzillo, A., Caldejon, S., Casper, T., Casteli, D., Chong, P., Crichton, K., Cuhaciyan, C., Daigle, T., Dalley, R., Dee, N., Desta, T., Dingman, S., Doperalski, A., Dotson, N., Egdorf, T., Fisher, M., de Frates, R.A., Garren, E., Garwood, M., Gary, A., Gaudreault, N., Godfrey, K., Gorham, M., Gu, H., Habel, C., Hadley, K., Harrington, J., Harris, J., Henry, A., Hill, D., Josephsen, S., Kebede, S., Kim, L., Kroll, M., Lee, B., Lemon, T., Liu, X., Long, B., Mann, R., McGraw, M., Mihalas, S., Mukora, A., Murphy, G.J., Ng, L., Ngo, K., Nguyen, T.N., Nicovich, P.R., Oldre, A., Park, D., Parry, S., Perkins, J., Potekhina, L., Reid, D., Robertson, M., Sandman, D., Schroedter, M., Slaughterbeck, C., Soler-Llavina, G., Sulc, J., Szafer, A., Tasic, B., Taskin, N., Teeter, C., Thatra, N., Tung, H., Wakeman, W., Williams, G., Young, R., Zhou, Z., Farrell, C., Peng, H., Hawrylycz, M.J., Lein, E., Ng, L., Arkhipov, A., Bernard, A., Phillips, J.W., Zeng, H., & Koch, C. (2019). Classification of electrophysiological and morphological neuron types in the mouse visual cortex. Nature Neuroscience, 22(7), 1182–1195.

    CAS  PubMed  Article  Google Scholar 

  23. Gouwens, NW, Sorensen, SA, Baftizadeh, F, Budzillo, A, Lee, BR, Jarsky, T, Alfiler, L, Arkhipov, A, Baker, K, Barkan, E, Berry, K, Bertagnolli, D, Bickley, K, Bomben, J, Braun, T, Brouner, K, Casper, T, Crichton, K, Daigle, TL, Dalley, R, de Frates, R, Dee, N, Desta, T, Lee, SD, Dotson, N, Egdorf, T, Ellingwood, L, Enstrom, R, Esposito, L, Farrell, C, Feng, D, Fong, O, Gala, R, Gamlin, C, Gary, A, Glandon, A, Goldy, J, Gorham, M, Graybuck, L, Gu, H, Hadley, K, Hawrylycz, MJ, Henry, AM, Hill, D, Hupp, M, Kebede, S, Kim, TK, Kim, L, Kroll, M, Lee, C, Link, KE, Mallory, M, Mann, R, Maxwell, M, McGraw, M, McMillen, D, Mukora, A, Ng, L, Ng, L, Ngo, K, Nicovich, PR, Oldre, A, Park, D, Peng, H, Penn, O, Pham, T, Pom, A, Potekhina, L, Rajanbabu, R, Ransford, S, Reid, D, Rimorin, C, Robertson, M, Ronellenfitch, K, Ruiz, A, Sandman, D, Smith, K, Sulc, J, Sunkin, SM, Szafer, A, Tieu, M, Torkelson, A, Trinh, J, Tung, H, Wakeman, W, War, K, Williams, G, Zhou, Z, Ting, J, Sumbul, U, Lein, E, Koch, C, Yao, Z, Tasic, B, Berg, J, Murphy, GJ, & Zeng, H. (2020). Toward an integrated classification of neuronal cell types: morphoelectric and transcriptomic characterization of individual gabaergic cortical neurons. bioRxiv.

  24. Han, S., Yang, W., & Yuste, R. (2019). Two-color volumetric imaging of neuronal activity of cortical columns. Cell Reports, 27(7), 2229–2240.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Harris, K.D., & Shepherd, G.M. (2015). The neocortical circuit: themes and variations. Nature Neuroscience, 18(2), 170.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Helmstaedter, M., Sakmann, B., & Feldmeyer, D. (2008). The relation between dendritic geometry, electrical excitability, and axonal projections of l2/3 interneurons in rat barrel cortex. Cerebral Cortex, 19(4), 938–950.

    PubMed  Article  Google Scholar 

  27. Hernández-Pérez, L.A, Delgado-Castillo, D., Martín-Pérez, R, Orozco-Morales, R, & Lorenzo-Ginori, J.V. (2019). New features for neuron classification. Neuroinformatics, 17(1), 5–25.

    PubMed  Article  Google Scholar 

  28. Hill, M.O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54(2), 427–432.

    Article  Google Scholar 

  29. Hines, M.L., Davison, A.P., & Muller, E. (2009). Neuron and python. Frontiers in neuroinformatics, 3.

  30. Jiang, X, Shen, S, Cadwell, CR, Berens, P, Sinz, F, Ecker, AS, Patel, S, & Tolias, AS. (2015). Principles of connectivity among morphologically defined cell types in adult neocortex. Science, 350(6264), aac9462.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Kanari, L., Ramaswamy, S., Shi, Y., Morand, S., Meystre, J., Perin, R., Abdellah, M., Wang, Y., Hess, K, & Markram, H. (2019). Objective morphological classification of neocortical pyramidal cells. Cerebral Cortex.

  32. Kepecs, A., & Fishell, G. (2014). Interneuron cell types are fit to function. Nature, 505(7483), 318–326.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Kirch, C, & Gollo, LL. (2019). Spatially resolved dendritic integration: Towards a functional classification of neurons. bioRxiv p 657403.

  34. Krimer, L.S., Zaitsev, A.V., Czanner, G., Kroner, S., González-Burgos, G, Povysheva, N.V., Iyengar, S., Barrionuevo, G., & Lewis, D.A. (2005). Cluster analysis–based physiological classification and morphological properties of inhibitory neurons in layers 2–3 of monkey dorsolateral prefrontal cortex. Journal of Neurophysiology, 94(5), 3009– 3022.

    PubMed  Article  Google Scholar 

  35. Li, T., Tian, C., Scalmani, P., Frassoni, C., Mantegazza, M., Wang, Y., Yang, M., Wu, S., & Shu, Y. (2014). Action potential initiation in neocortical inhibitory interneurons. PLoS Biology, 12(9), e1001944.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. López-Cabrera, JD, & Lorenzo-Ginori, JV. (2018). Feature selection for the classification of traced neurons. Journal of Neuroscience Methods.

  37. Luo, C., Keown, C.L., Kurihara, L., Zhou, J., He, Y., Li, J., Castanon, R., Lucero, J., Nery, J.R., Sandoval, J.P., & et al. (2017). Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science, 357(6351), 600–604.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Manor, Y., Koch, C., & Segev, I. (1991). Effect of geometrical irregularities on propagation delay in axonal trees. Biophysical Journal, 60(6), 1424–1437.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdellah, M., Sanchez, C.A., Ailamaki, A., Alonso-Nanclares, L., Antille, N., Arsever, S., & et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell, 163(2), 456–492.

    CAS  PubMed  Article  Google Scholar 

  40. Mihaljević, B, Larrañaga, P, Benavides-Piccione, R., Hill, S., DeFelipe, J., & Bielza, C. (2018). Towards a supervised classification of neocortical interneuron morphologies. BMC Bioinformatics, 19(1), 511.

    PubMed  PubMed Central  Article  Google Scholar 

  41. Ofer, N., & Shefi, O. (2016). Axonal geometry as a tool for modulating firing patterns. Applied Mathematical Modelling, 40(4), 3175–3184.

    Article  Google Scholar 

  42. Ofer, N., Shefi, O., & Yaari, G. (2017). Branching morphology determines signal propagation dynamics in neurons. Scientific Reports, 7.

  43. Overstreet-Wadiche, L., & McBain, C.J. (2015). Neurogliaform cells in cortical circuits. Nature Reviews Neuroscience, 16(8), 458.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Papoutsi, A., Kastellakis, G., & Poirazi, P. (2017). Basal tree complexity shapes functional pathways in the prefrontal cortex. Journal of Neurophysiology, 118(4), 1970–1983.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., & et al. (2011). Scikit-learn: machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.

    Google Scholar 

  46. Ramaswamy, S., Courcol, J.D., Abdellah, M., Adaszewski, S.R., Antille, N., Arsever, S., Atenekeng, G., Bilgili, A., Brukau, Y., Chalimourda, A., & et al. (2015). The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex. Frontiers in Neural Circuits, 9.

  47. Tasic, B., Menon, V., Nguyen, T.N., Kim, T.K., Jarsky, T., Yao, Z., Levi, B., Gray, L.T., Sorensen, S.A., Dolbeare, T., & et al. (2016). Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neuroscience, 19(2), 335–346.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Teeter, C., Iyer, R., Menon, V., Gouwens, N., Feng, D., Berg, J., Szafer, A., Cain, N., Zeng, H., Hawrylycz, M., & et al. (2018). Generalized leaky integrate-and-fire models classify multiple neuron types. Nature Communications, 9(1), 709.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. Tremblay, R., Lee, S., & Rudy, B. (2016). Gabaergic interneurons in the neocortex: from cellular properties to circuits. Neuron, 91(2), 260–292.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Tuomisto, H. (2010). A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography, 33(1), 2–22.

    Article  Google Scholar 

  51. Wan, Y., Long, F., Qu, L., Xiao, H., Hawrylycz, M., Myers, E.W., & Peng, H. (2015). Blastneuron for automated comparison, retrieval and clustering of 3d neuron morphologies. Neuroinformatics, 13(4), 487–499.

    PubMed  Article  Google Scholar 

  52. Wang, B., Ke, W., Guang, J., Chen, G., Yin, L., Deng, S., He, Q., Liu, Y., He, T., Zheng, R., & et al. (2016). Firing frequency maxima of fast-spiking neurons in human, monkey, and mouse neocortex. Frontiers in Cellular Neuroscience, 10.

  53. Yuste, R, Hawrylycz, M, Aalling, N, Arendt, D, Armananzas, R, Ascoli, G, Bielza, C, Bokharaie, V, Bergmann, T, Bystron, I, Capogna, M, Chang, Y, Clemens, A, de Kock, C, DeFelipe, J, Santos, SD, Dunville, K, Feldmeyer, D, Fiath, R, Fishell, G, Foggetti, A, Gao, X, Ghaderi, P, Gunturkun, O, Hall, VJ, Helmstaedter, M, Herculano-Houzel, S, Hilscher, M, Hirase, H, Hjerling-Leffler, J, Hodge, R, Huang, ZJ, Huda, R, Juan, Y, Khodosevich, K, Kiehn, O, Koch, H, Kuebler, E, Kuhnemund, M, Larranaga, P, Lelieveldt, B, Louth, EL, Lui, J, Mansvelder, H, Marin, O, Martínez-Trujillo, J, Moradi, H, Goriounova, N, Mohapatra, A, Nedergaard, M, Němec, P, Ofer, N, Pfisterer, U, Pontes, S, Redmond, W, Rossier, J, Sanes, J, Scheuermann, R, Saiz, ES, Somogyi, P, Tamás, G, Tolias, A, Tosches, M, Garcia, MT, Aguilar-Valles, A, Munguba, H, Wozny, C, Wuttke, T, Yong, L, Zeng, H, & Lein, ES. (2019). A community-based transcriptomics classification and nomenclature of neocortical cell types. arXiv:https://arxiv.org/abs/190903083.

  54. Zeisel, A., Muñoz-Manchado, A.B., Codeluppi, S., Lönnerberg, P, La Manno, G., Juréus, A, Marques, S., Munguba, H., He, L., Betsholtz, C., & et al. (2015). Cell types in the mouse cortex and hippocampus revealed by single-cell rna-seq. Science, 347(6226), 1138–1142.

    CAS  Article  Google Scholar 

  55. Zeng, H., & Sanes, J.R. (2017). Neuronal cell-type classification: challenges, opportunities and the path forward. Nature Reviews Neuroscience, 18(9), 530.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Israel Science Foundation. Orit Shefi (1053/15) and Gur Yaari (832/16).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Orit Shefi or Gur Yaari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 3.09 MB)

(PDF 1.34 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ofer, N., Shefi, O. & Yaari, G. Axonal Tree Morphology and Signal Propagation Dynamics Improve Interneuron Classification. Neuroinform 18, 581–590 (2020). https://doi.org/10.1007/s12021-020-09466-8

Download citation

Keywords

  • Interneuron classification
  • Neuromorphology
  • Neuronal coding