Ad-Dab’bagh, Y., Lyttelton, O., Muehlboeck, J., Lepage, C., Einarson, D., Mok, K., Ivanov, O., Vincent, R., Lerch, J., & Fombonne, E. (2006). The CIVET image-processing environment: A fully automated comprehensive pipeline for anatomical neuroimaging research. Proceedings of the 12th annual meeting of the organization for human brain mapping (p. 2266). Italy: Florence.
Google Scholar
ADNI (2010) accessed 5/30/2017. http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_GE_22_E_DTI.pdf. http://adni.loni.usc.edu/.
Altar, C. A., & Baudry, M. (1990). Systemic injection of kainic acid: Gliosis in olfactory and limbic brain regions quantified with [3 H] PK 11195 binding autoradiography. Exp Neurol, 109, 333–341.
Article
CAS
PubMed
Google Scholar
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry - the methods. Neuroimage, 11, 805–821.
Article
CAS
PubMed
Google Scholar
Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal, 12, 26–41.
Article
CAS
PubMed
Google Scholar
Avants, B. B., Tustison, N., & Song, G. (2009). Advanced normalization tools (ANTS). Insight J, 2, 1–35.
Google Scholar
Avants, B. B., Yushkevich, P., Pluta, J., Minkoff, D., Korczykowski, M., Detre, J., & Gee, J. C. (2010). The optimal template effect in hippocampus studies of diseased populations. Neuroimage, 49, 2457–2466.
Article
PubMed
Google Scholar
Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage, 54, 2033–2044.
Article
PubMed
Google Scholar
Avants, B. B., Tustison, N. J., Stauffer, M., Song, G., Wu, B., & Gee, J. C. (2014). The insight ToolKit image registration framework. Frontiers in neuroinformatics, 8, 44.
Article
PubMed
PubMed Central
Google Scholar
Avants, B.B., Kandel, B.M., Duda, J.T., Cook, P.A., Tustison, N.J., Shrinidhi, K.L., 2015. ANTsR: ANTs in R.
Badea, A., Ali-Sharief, A., & Johnson, G. (2007). Morphometric analysis of the C57BL/6J mouse brain. Neuroimage, 37, 683–693.
Article
CAS
PubMed
Google Scholar
Badea, A., Johnson, G. A., & Williams, R. (2009). Genetic dissection of the mouse brain using high-field magnetic resonance microscopy. Neuroimage, 45, 1067–1079.
Article
CAS
PubMed
Google Scholar
Badea, A., Gewalt, S., Avants, B. B., Cook, J. J., & Johnson, G. A. (2012). Quantitative mouse brain phenotyping based on single and multispectral MR protocols. Neuroimage, 63, 1633–1645.
Article
PubMed
Google Scholar
Badea, A., Kane, L., Anderson, R. J., Qi, Y., Foster, M., Cofer, G. P., Medvitz, N., Buckley, A. F., Badea, A. K., Wetsel, W. C., & Colton, C. A. (2016). The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage, 142, 498–511.
Article
CAS
PubMed
Google Scholar
Becker, M., Guadalupe, T., Franke, B., Hibar, D. P., Renteria, M. E., Stein, J. L., Thompson, P. M., Francks, C., Vernes, S. C., & Fisher, S. E. (2016). Early developmental gene enhancers affect subcortical volumes in the adult human brain. Hum Brain Mapp, 37, 1788–1800.
Article
PubMed
PubMed Central
Google Scholar
Ben-Ari, Y., Tremblay, E., & Ottersen, O. (1980). Injections of kainic acid into the amygdaloid complex of the rat: An electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience, 5, 515–528.
Article
CAS
PubMed
Google Scholar
Biedermann, S., Fuss, J., Zheng, L., Sartorius, A., Falfán-Melgoza, C., Demirakca, T., Gass, P., Ende, G., & Weber-Fahr, W. (2012). In vivo voxel based morphometry: Detection of increased hippocampal volume and decreased glutamate levels in exercising mice. Neuroimage, 61, 1206–1212.
Article
PubMed
Google Scholar
Blokland, G. A., de Zubicaray, G. I., McMahon, K. L., & Wright, M. J. (2012). Genetic and environmental influences on neuroimaging phenotypes: A meta-analytical perspective on twin imaging studies. Twin Research and Human Genetics, 15, 351–371.
Article
PubMed
PubMed Central
Google Scholar
Borg, J., & Chereul, E. (2008). Differential MRI patterns of brain atrophy in double or single transgenic mice for APP and/or SOD. J Neurosci Res, 86, 3275–3284.
Article
CAS
PubMed
Google Scholar
Budin, F., Hoogstoel, M., Reynolds, P., Grauer, M., O'Leary-Moore, S. K., & Oguz, I. (2013). Fully automated rodent brain MR image processing pipeline on a Midas server: From acquired images to region-based statistics. Front Neuroinform, 7, 10.3389.
Article
Google Scholar
Calabrese, E., Badea, A., Watson, C., & Johnson, G. A. (2013). A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability. Neuroimage, 71, 196–206.
Article
PubMed
Google Scholar
Calabrese, E., Du, F., Garman, R. H., Johnson, G. A., Riccio, C., Tong, L. C., & Long, J. B. (2014). Diffusion tensor imaging reveals white matter injury in a rat model of repetitive blast-induced traumatic brain injury. J Neurotrauma, 31, 938–950.
Article
PubMed
PubMed Central
Google Scholar
Calabrese, E., Badea, A., Coe, C. L., Lubach, G. R., Shi, Y., Styner, M. A., & Johnson, G. A. (2015a). A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. Neuroimage, 117, 408–416.
Article
PubMed
Google Scholar
Calabrese, E., Badea, A., Cofer, G., Qi, Y., & Johnson, G. A. (2015b). A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data. Cereb Cortex, 25(bhv121), 4628–4637.
Article
PubMed
PubMed Central
Google Scholar
Camara, O., Schweiger, M., Scahill, R. I., Crum, W. R., Sneller, B. I., Schnabel, J. A., Ridgway, G. R., Cash, D. M., Hill, D. L., & Fox, N. C. (2006). Phenomenological model of diffuse global and regional atrophy using finite-element methods. Medical Imaging, IEEE Transactions on, 25, 1417–1430.
Article
Google Scholar
Chung, M., Worsley, K., Paus, T., Cherif, C., Collins, D., Giedd, J., Rapoport, J., & Evans, A. (2001). A unified statistical approach to deformation-based morphometry. Neuroimage, 14, 595–606.
Article
CAS
PubMed
Google Scholar
Dedeurwaerdere, S., Callaghan, P. D., Pham, T., Rahardjo, G. L., Amhaoul, H., Berghofer, P., Quinlivan, M., Mattner, F., Loc'h, C., & Katsifis, A. (2012). PET imaging of brain inflammation during early epileptogenesis in a rat model of temporal lobe epilepsy. EJNMMI Res, 2, 60.
Article
PubMed
PubMed Central
Google Scholar
Dinov, I., Van Horn, J., Lozev, K., Magsipoc, R., Petrosyan, P., Liu, Z., MacKenzie-Graha, A., Eggert, P., Parker, D. S., & Toga, A. W. (2009). Efficient, distributed and interactive neuroimaging data analysis using the LONI pipeline. Frontiers in neuroinformatics, 3, 22.
Article
PubMed
PubMed Central
Google Scholar
Dinov, I., Lozev, K., Petrosyan, P., Liu, Z., Eggert, P., Pierce, J., Zamanyan, A., Chakrapani, S., Van Horn, J., & Parker, D. S. (2010). Neuroimaging study designs, computational analyses and data provenance using the LONI pipeline. PLoS One, 5, e13070.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dreifuss, S., Vingerhoets, F., Lazeyras, F., Andino, S. G., Spinelli, L., Delavelle, J., & Seeck, M. (2001). Volumetric measurements of subcortical nuclei in patients with temporal lobe epilepsy. Neurology, 57, 1636–1641.
Article
CAS
PubMed
Google Scholar
Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A, 113, 7900–7905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellegood, J., Anagnostou, E., Babineau, B. A., Crawley, J. N., Lin, L., Genestine, M., Dicicco-Bloom, E., Lai, J. K. Y., Foster, J. A., Peñagarikano, O., Geschwind, D. H., Pacey, L. K., Hampson, D. R., Laliberté, C. L., Mills, A. A., Tam, E., Osborne, L. R., Kouser, M., Espinosa-Becerra, F., Xuan, Z., Powell, C. M., Raznahan, A., Robins, D. M., Nakai, N., Nakatani, J., Takumi, T., Van Eede, M. C., Kerr, T. M., Muller, C., Blakely, R. D., Veenstra-Vander Weele, J., Henkelman, R. M., & Lerch, J. P. (2015). Clustering autism: Using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Mol Psychiatry, 20, 118–125.
Article
CAS
PubMed
Google Scholar
Freeborough, P. A., & Fox, N. C. (1997). The boundary shift integral: An accurate and robust measure of cerebral volume changes from registered repeat MRI. Medical Imaging, IEEE Transactions on, 16, 623–629.
Article
CAS
Google Scholar
Friedel, M., van Eede, M. C., Pipitone, J., Chakravarty, M. M., & Lerch, J. P. (2014). Pydpiper: A flexible toolkit for constructing novel registration pipelines. Front Neuroinform, 8, 67.
Article
PubMed
PubMed Central
Google Scholar
Frisoni, G. B., Redolfi, A., Manset, D., Rousseau, M.-É., Toga, A., & Evans, A. C. (2011). Virtual imaging laboratories for marker discovery in neurodegenerative diseases. Nat Rev Neurol, 7, 429–438.
Article
PubMed
Google Scholar
Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R. S. (1994). Statistical parametric maps in functional imaging: A general linear approach. Hum Brain Mapp, 2, 189–210.
Article
Google Scholar
Gee, J. C., Reivich, M., & Bajcsy, R. (1993). Elastically deforming 3D atlas to match anatomical brain images. J Comput Assist Tomogr, 17, 225–236.
Article
CAS
PubMed
Google Scholar
Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15, 870–878.
Article
PubMed
Google Scholar
Good, C. D., Ashburner, J., & Frackowiak, R. S. J. (2001). Computational neuroanatomy: New perspectives for neuroradiology. Rev Neurol, 157, 797–805.
CAS
PubMed
Google Scholar
Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., Flandin, G., Ghosh, S. S., Glatard, T., Halchenko, Y. O., Handwerker, D. A., Hanke, M., Keator, D., Li, X., Michael, Z., Maumet, C., Nichols, B. N., Nichols, T. E., Pellman, J., Poline, J. B., Rokem, A., Schaefer, G., Sochat, V., Triplett, W., Turner, J. A., Varoquaux, G., & Poldrack, R. A. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data, 3, 160044.
Article
PubMed
PubMed Central
Google Scholar
Green, D., Swets, J., (1966). Signal detection theory and psychophysics. 1966. N Y 888‑889.
Hayasaka, S., Phan, K. L., Liberzon, I., Worsley, K. J., & Nichols, T. E. (2004). Nonstationary cluster-size inference with random field and permutation methods. Neuroimage, 22, 676–687.
Article
PubMed
Google Scholar
Hosseini, M. P., Nazem-Zadeh, M. R., Pompili, D., Jafari-Khouzani, K., Elisevich, K., & Soltanian-Zadeh, H. (2016). Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients. Med Phys, 43, 538–553.
Article
PubMed
PubMed Central
Google Scholar
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). Fsl. Neuroimage, 62, 782–790.
Article
PubMed
Google Scholar
Jiang, Y., & Johnson, G. A. (2010). Microscopic diffusion tensor imaging of the mouse brain. Neuroimage, 50, 465–471.
Article
PubMed
Google Scholar
Johnson, G.A., (2000). Three-dimensional morphology by magnetic resonance imaging. Google Patents.
Johnson, G., Benveniste, H., Black, R., Hedlund, L., Maronpot, R., & Smith, B. (1993). Histology by magnetic resonance microscopy. Magn Reson Q, 9, 1–30.
CAS
PubMed
Google Scholar
Johnson, G. A., Cofer, G. P., Fubara, B., Gewalt, S. L., Hedlund, L. W., & Maronpot, R. R. (2002). Magnetic resonance histology for morphologic phenotyping. J Magn Reson Imaging, 16, 423–429.
Article
PubMed
Google Scholar
Johnson, G. A., Ali-Sharief, A., Badea, A., Brandenburg, J., Cofer, G., Fubara, B., Gewalt, S., Hedlund, L. W., & Upchurch, L. (2007). High-throughput morphologic phenotyping of the mouse brain with magnetic resonance histology. Neuroimage, 37, 82–89.
Article
PubMed
Google Scholar
Johnson, G. A., Badea, A., Brandenburg, J., Cofer, G., Fubara, B., Liu, S., & Nissanov, J. (2010). Waxholm space: An image-based reference for coordinating mouse brain research. Neuroimage, 53, 365–372.
Article
PubMed
Google Scholar
Johnson, G. A., Calabrese, E., Badea, A., Paxinos, G., & Watson, C. (2012). A multidimensional magnetic resonance histology atlas of the Wistar rat brain. Neuroimage, 62, 1848–1856.
Article
PubMed
Google Scholar
Jones, D. K., Symms, M. R., Cercignani, M., & Howard, R. J. (2005). The effect of filter size on VBM analyses of DT-MRI data. Neuroimage, 26, 546–554.
Article
PubMed
Google Scholar
Jovicich, J., Minati, L., Marizzoni, M., Marchitelli, R., Sala-Llonch, R., Bartrés-Faz, D., Arnold, J., Benninghoff, J., Fiedler, U., Roccatagliata, L., Picco, A., Nobili, F., Blin, O., Bombois, S., Lopes, R., Bordet, R., Sein, J., Ranjeva, J. P., Didic, M., Gros-Dagnac, H., Payoux, P., Zoccatelli, G., Alessandrini, F., Beltramello, A., Bargalló, N., Ferretti, A., Caulo, M., Aiello, M., Cavaliere, C., Soricelli, A., Parnetti, L., Tarducci, R., Floridi, P., Tsolaki, M., Constantinidis, M., Drevelegas, A., Rossini, P. M., Marra, C., Schönknecht, P., Hensch, T., Hoffmann, K. T., Kuijer, J. P., Visser, P. J., Barkhof, F., & Frisoni, G. B. (2016). Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: A multicentric resting-state fMRI study. Neuroimage, 124, 442–454.
Article
PubMed
Google Scholar
Karaçali, B., & Davatzikos, C. (2006). Simulation of tissue atrophy using a topology preserving transformation model. IEEE Trans Med Imaging, 25, 649–652.
Article
PubMed
Google Scholar
Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M.-C., Christensen, G. E., Collins, D. L., Gee, J., & Hellier, P. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage, 46, 786–802.
Article
PubMed
Google Scholar
Kochunov, P., Lancaster, J. L., Thompson, P., Woods, R., Mazziotta, J., Hardies, J., & Fox, P. (2001). Regional spatial normalization: Toward an optimal target. J Comput Assist Tomogr, 25, 805–816.
Article
CAS
PubMed
Google Scholar
Kremen, W. S., Fennema-Notestine, C., Eyler, L. T., Panizzon, M. S., Chen, C. H., Franz, C. E., Lyons, M. J., Thompson, W. K., & Dale, A. M. (2013). Genetics of brain structure: Contributions from the Vietnam era twin study of aging. Am J Med Genet B Neuropsychiatr Genet, 162, 751–761.
Article
CAS
Google Scholar
Lee, J., Ehlers, C., Crews, F., Niethammer, M., Budin, F., Paniagua, B., Sulik, K., Johns, J., Styner, M., Oguz, I., (2011). Automatic cortical thickness analysis on rodent brain. SPIE medical imaging. International Society for Optics and Photonics, pp. 796248–796248-796211.
Lerch, J. P., Carroll, J. B., Dorr, A., Spring, S., Evans, A. C., Hayden, M. R., Sled, J. G., & Henkelman, R. M. (2008). Cortical thickness measured from MRI in the YAC128 mouse model of Huntington's disease. Neuroimage, 41, 243–251.
Article
PubMed
Google Scholar
Lerch, J. P., Sled, J. G., & Henkelman, R. M. (2011). MRI phenotyping of genetically altered mice. Magnetic Resonance Neuroimaging: Methods and Protocols, 711, 349–361.
Article
CAS
Google Scholar
Lerch, J. P., Gazdzinski, L., Germann, J., Sled, J. G., Henkelman, R. M., & Nieman, B. J. (2012). Wanted dead or alive? The tradeoff between in-vivo versus ex-vivo MR brain imaging in the mouse. Frontiers in neuroinformatics, 6, 6.
Article
PubMed
PubMed Central
Google Scholar
Lévesque, M., & Avoli, M. (2013). The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev, 37, 2887–2899.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li, T., Ren, G., Lusardi, T., Wilz, A., Lan, J. Q., Iwasato, T., Itohara, S., Simon, R. P., & Boison, D. (2008). Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J Clin Invest, 118, 571–582.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu, G., Gu, B., He, X.-P., Joshi, R. B., Wackerle, H. D., Rodriguiz, R. M., Wetsel, W. C., & McNamara, J. O. (2013). Transient inhibition of TrkB kinase after status epilepticus prevents development of temporal lobe epilepsy. Neuron, 79, 31–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mattes, D., Haynor, D. R., Vesselle, H., Lewellen, T. K., & Eubank, W. (2003). PET-CT image registration in the chest using free-form deformations. IEEE Trans Med Imaging, 22, 120–128.
Article
PubMed
Google Scholar
Michael, A. M., Evans, E., & Moore, G. J. (2016). Influence of group on individual subject maps in SPM voxel based morphometry. Front Neurosci, 10, 522.
Article
PubMed
PubMed Central
Google Scholar
Minervini, M., Damiano, M., Tucci, V., Bifone, A., Gozzi, A., & Tsaftaris, S. A. (2012). Mouse neuroimaging phenotyping in the cloud. Image processing theory, tools and applications (IPTA), 2012 3rd international conference on. IEEE, 55–60.
Mouri, G., Jimenez-Mateos, E., Engel, T., Dunleavy, M., Hatazaki, S., Paucard, A., Matsushima, S., Taki, W., & Henshall, D. C. (2008). Unilateral hippocampal CA3-predominant damage and short latency epileptogenesis after intra-amygdala microinjection of kainic acid in mice. Brain Res, 1213, 140–151.
Article
CAS
PubMed
Google Scholar
Nichols, T. E., Das, S., Eickhoff, S. B., Evans, A. C., Glatard, T., Hanke, M., Kriegeskorte, N., Milham, M. P., Poldrack, R. A., Poline, J. B., Proal, E., Thirion, B., Van Essen, D. C., White, T., & Yeo, B. T. T. (2017). Best practices in data analysis and sharing in neuroimaging using MRI. Nat Neurosci, 20, 299–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nieman, B. J., Bock, N. A., Bishop, J., Chen, X. J., Sled, J. G., Rossant, J., & Henkelman, R. M. (2005). Magnetic resonance imaging for detection and analysis of mouse phenotypes. NMR Biomed, 18, 447–468.
Article
PubMed
Google Scholar
Pagani, M., Damiano, M., Galbusera, A., Tsaftaris, S. A., & Gozzi, A. (2016). Semi-automated registration-based anatomical labelling, voxel based morphometry and cortical thickness mapping of the mouse brain. J Neurosci Methods, 267, 62–73.
Article
PubMed
Google Scholar
Parent, J. M., Timothy, W. Y., Leibowitz, R. T., Geschwind, D. H., Sloviter, R. S., & Lowenstein, D. H. (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci, 17, 3727–3738.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pearson, R., Neal, J., & Powell, T. (1986). Hypertrophy of cholinergic neurones of the basal nucleus in the rat following damage of the contralateral nucleus. Brain Res, 382, 149–152.
Article
CAS
PubMed
Google Scholar
R Core Team. (2015). R: A language and environment for statistical computing. In R Foundation for statistical computing. Austria: Viena.
Google Scholar
Radua, J., Canales-Rodriguez, E. J., Pomarol-Clotet, E., & Salvador, R. (2014). Validity of modulation and optimal settings for advanced voxel-based morphometry. Neuroimage, 86, 81–90.
Article
PubMed
Google Scholar
Rajagopalan, V., & Pioro, E. P. (2015). Disparate voxel based morphometry (VBM) results between SPM and FSL softwares in ALS patients with frontotemporal dementia: Which VBM results to consider? BMC Neurol, 15(1), 32.
Article
PubMed
PubMed Central
Google Scholar
Robbins, S., Evans, A. C., Collins, D. L., & Whitesides, S. (2004). Tuning and comparing spatial normalization methods. Med Image Anal, 8, 311–323.
Article
PubMed
Google Scholar
Sawiak, S., Wood, N., Williams, G., Morton, A., Carpenter, T., (2009a). SPMMouse: A new toolbox for SPM in the animal brain. ISMRM 17th Scientific Meeting & Exhibition, April, pp. 18–24.
Sawiak, S., Wood, N., Williams, G., Morton, A., & Carpenter, T. (2009b). Voxel-based morphometry in the R6/2 transgenic mouse reveals differences between genotypes not seen with manual 2D morphometry. Neurobiol Dis, 33, 20–27.
Article
CAS
PubMed
Google Scholar
Sawiak, S. J., Wood, N. I., Williams, G. B., Morton, A. J., & Carpenter, T. A. (2013). Voxel-based morphometry with templates and validation in a mouse model of Huntington’s disease. Magn Reson Imaging, 31, 1522–1531.
Article
PubMed
PubMed Central
Google Scholar
Shen, S., & Sterr, A. (2013). Is DARTEL-based voxel-based morphometry affected by width of smoothing kernel and group size? A study using simulated atrophy. J Magn Reson Imaging, 37, 1468–1475.
Article
PubMed
Google Scholar
Shen, S., Szameitat, A. J., & Sterr, A. (2007). VBM lesion detection depends on the normalization template: A study using simulated atrophy. Magn Reson Imaging, 25, 1385–1396.
Article
PubMed
Google Scholar
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., & Flitney, D. E. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23, S208–S219.
Article
PubMed
Google Scholar
Thacker, N. (2005). Tutorial: A critical analysis of voxel based morphometry (VBM). Manchester: University of Manchester.
Google Scholar
Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., Toro, R., Jahanshad, N., Schumann, G., & Franke, B. (2014). The ENIGMA consortium: Large-scale collaborative analyses of neuroimaging and genetic data. Brain imaging and behavior, 8, 153–182.
PubMed
PubMed Central
Google Scholar
Tustison, N. J. (2013). Explicit B-spline regularization in diffeomorphic image registration. Frontiers in neuroinformatics, 7, 39.
Article
PubMed
PubMed Central
Google Scholar
VanEede, M. C., Scholz, J., Chakravarty, M. M., Henkelman, R. M., & Lerch, J. P. (2013). Mapping registration sensitivity in MR mouse brain images. Neuroimage, 82, 226–236.
Article
Google Scholar
Wang, R., Benner, T., Sorensen, A., Wedeen, V., (2007). Diffusion toolkit: A software package for diffusion imaging data processing and tractography. Proc Intl Soc Mag Reson Med.
Worsley, K.J., Taylor, J., Carbonell, F., Chung, M.K., Duerden, E., Bernhardt, B., Lyttelton, O., Boucher, M., Evans, A.C., (2009). A Matlab toolbox for the statistical analysis of univariate and multivariate surface and volumetric data using linear mixed effects models and random field theory. NeuroImage Organisation for Human Brain Mapping Annual Meeting
Wuarin, J.-P., & Dudek, F. E. (1996). Electrographic seizures and new recurrent excitatory circuits in the dentate gyrus of hippocampal slices from kainate-treated epileptic rats. J Neurosci, 16, 4438–4448.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoo, A. B., Jette, M. A., & Grondona, M. (2003). Slurm: Simple linux utility for resource management. Job scheduling strategies for parallel processing (pp. 44–60). Springer.