Optimal Model Parameter Estimation from EEG Power Spectrum Features Observed during General Anesthesia

Abstract

Mathematical modeling is a powerful tool that enables researchers to describe the experimentally observed dynamics of complex systems. Starting with a robust model including model parameters, it is necessary to choose an appropriate set of model parameters to reproduce experimental data. However, estimating an optimal solution of the inverse problem, i.e., finding a set of model parameters that yields the best possible fit to the experimental data, is a very challenging problem. In the present work, we use different optimization algorithms based on a frequentist approach, as well as Monte Carlo Markov Chain methods based on Bayesian inference techniques to solve the considered inverse problems. We first probe two case studies with synthetic data and study models described by a stochastic non-delayed linear second-order differential equation and a stochastic linear delay differential equation. In a third case study, a thalamo-cortical neural mass model is fitted to the EEG spectral power measured during general anesthesia induced by anesthetics propofol and desflurane. We show that the proposed neural mass model fits very well to the observed EEG power spectra, particularly to the power spectral peaks within δ − (0 − 4 Hz) and α − (8 − 13 Hz) frequency ranges. Furthermore, for each case study, we perform a practical identifiability analysis by estimating the confidence regions of the parameter estimates and interpret the corresponding correlation and sensitivity matrices. Our results indicate that estimating the model parameters from analytically computed spectral power, we are able to accurately estimate the unknown parameters while avoiding the computational costs due to numerical integration of the model equations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Aldrich, J. (1997). R. A. Fisher and the making of maximum likelihood 1912-1922. Statistical Science, 12(3), 162–176.

    Article  Google Scholar 

  2. Almeida, J, & Voit, E. (2003). Neural-network-based parameter estimation in s-system models of biological networks. Genome Informatics, 14, 114–123.

    PubMed  CAS  Google Scholar 

  3. Ashyraliyev, M, Jaeger, J, & Blom, J G. (2008). Parameter estimation and determinability analysis applied to Drosophila gap gene circuits. BMC Systems Biology, 2(1), 83.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. Ashyraliyev, M, Fomekong-Nanfack, Y, Kaandorp, J A, & Blom, J G. (2009). Systems biology: Parameter estimation for biochemical models: Parameter estimation in systems biology. FEBS Journal, 276(4), 886–902.

    PubMed  Article  CAS  Google Scholar 

  5. Banga, J, & Balsa-Canto, E. (2008). Parameter estimation and optimal experimental design. Essays in Biochemistry, 45, 195–210.

    PubMed  Article  CAS  Google Scholar 

  6. Bates, D, & Watts, D. (1980). Relative curvature measures of nonlinearity. Journal of the Royal Statistical Society, Series B (Methodological), 42(1), 1–25.

    Google Scholar 

  7. Bates, D, & Watts, D. (1988). Nonlinear regression analysis and its applications. Wiley.

  8. Bojak, I, & Liley, D. (2005). Modeling the effects of anesthesia on the electroencephalogram. Physical Review E, 71, 041,902.

    Article  CAS  Google Scholar 

  9. Breakspear, M. (2017). Dynamic models of large-scale brain activity. Nature Neuroscience, 20(3), 340–352.

    PubMed  Article  CAS  Google Scholar 

  10. Brun, R, Reichert, P, & Kunsch, H. (2001). Practical identifiability analysis of large environmental simulation models. Water Resources Research, 37, 1015–1030.

    Article  Google Scholar 

  11. Buhry, L, Pace, M, & Saïghi, S. (2012). Global parameter estimation of an hodgkin-huxley formalism using membrane voltage recordings: Application to neuro-mimetic analog integrated circuits. Neurocomputing, 81, 75–85.

    Article  Google Scholar 

  12. Carpenter, B, Gelman, A, Hoffman, M D, an B Goodrich, D L, Betancourt, M, Brubaker, M, Guo, J, Li, P, & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76, 1.

    Article  Google Scholar 

  13. Corne, D, Dorigo, M, & Glover, F. (1999). New ideas in optimization. New York: McGraw-Hill.

    Google Scholar 

  14. Cuevas, E, Echavarria, A, & Ramirez-Ortegon, M A. (2014). An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Applied Intelligence, 40(2), 256–272.

    Article  Google Scholar 

  15. Daunizeau, J, Friston, K, & Kiebel, S. (2009). Variational bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D: Nonlinear Phenomena, 238(21), 2089–2118.

    Article  CAS  Google Scholar 

  16. Daunizeau, J, Stephan, K, & Friston, K. (2012). Stochastic dynamic causal modelling of fmri data: Should we care about neural noise? NeuroImage, 62(1), 464–481.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. David, O, Kiebel, S J, Harrison, L M, Mattout, J, Kilner, J M, & Friston, K J. (2006). Dynamic causal modeling of evoked responses in eeg and meg. NeuroImage, 30, 1255–1272.

    PubMed  Article  Google Scholar 

  18. Deco, G, Jirsa, V, McIntosh, A, Sporns, O, & Kotter, R. (2009). Key role of coupling, delay, and noise in resting brain fluctuations. Proceedings of the National Academy of Sciences of the United States of America, 106, 10,302–10,307.

    Article  Google Scholar 

  19. Donaldson, J, & Schnabel, R. (1985). Computational experience with confidence regions and confidence intervals for nonlinear least squares. In Proceedings of 17th symposium on the interface of computer sciences and statistics (pp. 83–93). Kentucky: Lexington.

  20. Draper, N, & Smith, H. (1998). Applied regression analysis. New York: Wiley.

    Google Scholar 

  21. Faisal, A, Selen, L, & Wolpert, D. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9, 292–303.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. Fogel, D B. (2000). Evolutionary computation: Toward a new philosophy of machine intelligence. New York: IEEE Press.

    Google Scholar 

  23. Forde, J, & Nelson, P. (2004). Applications of sturm sequences to bifurcation analysis of delay differential equation models. Journal of Mathematical Analysis and Applications, 300, 273–284.

    Article  Google Scholar 

  24. Friston, K, Harrison, L, & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19, 273–1302.

    Google Scholar 

  25. Gelman, A, Carlin, J B, Stern, H S, & Rubin, DB. (2004). Bayesian data analysis, texts in statistical science. London: Hall, CRC.

    Google Scholar 

  26. Georgieva, A, & Jordanov, I. (2009). Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithms. European Journal of Operational Research, 196, 413–422.

    Article  Google Scholar 

  27. Girolami, M, & Calderhead, B. (2011). Riemann manifold langevin and hamiltonian monte carlo methods. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 73 https://doi.org/10.1111/J.1467-9868.2010.00765.

  28. Green, P L, & Worden, K. (2015). Bayesian and markov chain monte carlo methods for identifying nonlinear systems in the presence of uncertainty. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373, 2051.

    Article  Google Scholar 

  29. Haario, H, Laine, M, Mira, A, & Saksman, E. (2006). Dram: efficient adaptive mcmc.

  30. Hamm, L, Brorsen, B, & Hagan, M. (2007). Comparison of stochastic global optimization methods to estimate neural network weights. Neural Processing Letters, 26, 145–158.

    Article  Google Scholar 

  31. Hashemi, M, Hutt, A, & Sleigh, J. (2014). Anesthetic action on extra-synaptic receptors: effects in neural population models of EEG activity. Journal of Frontiers in Systems Neuroscience, 8, 232.

    PubMed  Google Scholar 

  32. Hashemi, M, Hutt, A, & Sleigh, J. (2015). How the cortico-thalamic feedback affects the EEG power spectrum over frontal and occipital regions during propofol-induced sedation. Journal of Computational Neuroscience, 39(2), 155–179.

    PubMed  Article  Google Scholar 

  33. Hashemi, M, Hutt, A, Darren, H, & Sleigh, J. (2017). Anesthetic action on the transmission delay between cortex and thalamus explains the beta-buzz observed under propofol anesthesia. PLOS ONE, 12(6), 1–29.

    Article  CAS  Google Scholar 

  34. Herrmann, C S, Murray, M, Ionta, S, Hutt, A, & Lefebvre, J. (2016). Shaping intrinsic neural oscillations with periodic stimulation. Journal of Neuroscience, 36(19), 5328–5337.

    PubMed  Article  CAS  Google Scholar 

  35. Hutt, A. (2013). The anaesthetic propofol shifts the frequency of maximum spectral power in EEG during general anaesthesia: analytical insights from a linear model. Frontiers in Computational Neuroscience, 7, 2.

    PubMed  PubMed Central  Article  Google Scholar 

  36. Hutt, A, & Longtin, A. (2009). Effects of the anesthetic agent propofol on neural populations. Cognitive Neurodynamics, 4(1), 37–59.

    PubMed  PubMed Central  Article  Google Scholar 

  37. Hutt, A, Hashemi, M, & beim Graben, P. (2015). How to render neural fields more realistic (pp. 141–159). Springer International Publishing.

  38. Hutt, A, Mierau, A, & Lefebvre, J. (2016). Dynamic control of synchronous activity in networks of spiking neurons. PLoS One, 11(9), e0161,488.

    Article  CAS  Google Scholar 

  39. Ingalls, B. (2008). Sensitivity analysis: from model parameters to system behaviours. Essays in Biochemistry, 45, 177–193.

    PubMed  Article  CAS  Google Scholar 

  40. Jirsa, V, Proix, T, Perdikis, D, Woodman, M, Wang, H, Gonzalez-Martinez, J, Bernard, C, Bénar, C, Guye, M, Chauvel, P, & Bartolomei, F. (2017). The virtual epileptic patient: individualized whole-brain models of epilepsy spread. NeuroImage, 145, 377–388.

    PubMed  Article  CAS  Google Scholar 

  41. Kay, S. (1993). Fundamentals of statistical signal processing: estimation theory. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  42. Kell, D. (2004). Metabolomic and systems bilogy: making sense of the soup. Current Opinion in Microbiology, 7(3), 296–307.

    PubMed  Article  CAS  Google Scholar 

  43. Kimura, S, Ide, K, Kashihara, A, Kano, M, Hatakeyama, M, Masui, R, Nakagawa, N, Yokoyama, S, Kuramitsu, S, & Konagaya, A. (2005). Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics, 21(7), 1154–1163.

    PubMed  Article  CAS  Google Scholar 

  44. Kimura, A, Celani, A, Nagao, H, Stasevich, T, & Nakamura, K. (2015). Estimating cellular parameters through optimization procedures: elementary principles and applications. Frontiers in Physiology, 6, 60.

    PubMed  PubMed Central  Article  Google Scholar 

  45. Kitano, H. (2002). Computational systems biology. Nature, 420(6912), 206–210.

    PubMed  Article  CAS  Google Scholar 

  46. Kramer, A, Calderhead, B, & Radde, N. (2014). Hamiltonian monte carlo methods for efficient parameter estimation in steady state dynamical systems. BMC Bioinformatics, 15(1), 253.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. Lera, D, & Dergeyev, Y. (2010). Lipschitz and holder global optimization using space-filling curves. Applied Numerical Mathematics, 60, 115–129.

    Article  Google Scholar 

  48. Li, P, & Vu, Q D. (2013). Identification of parameter correlations for parameter estimation in dynamic biological models. BMC Systems Biology, 7, 91.

    PubMed  PubMed Central  Article  Google Scholar 

  49. Liang, C, & Lord, G. (2010). Stochastic methods in neuroscience. Oxford Univ. Press.

  50. Lillacci, G, & Khammash, M. (2010). Parameter estimation and model selection in computational biology. PLoS Computational Biology, 6(3), e1000,696.

    Article  CAS  Google Scholar 

  51. Ljung, L. (1999). System identification: theory for the user. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  52. Marsili-Libelli, S, Guerrizio, S, & Checchi, N. (2003). Confidence regions of estimated parameters for ecological systems. Ecological Modelling, 165, 127–146.

    Article  Google Scholar 

  53. Masoliver, J, & Porrá, J. (1993). Harmonic oscillators driven by colored noise: crossovers, resonances, and spectra. Physical Review E, 48(6), 4309–4319.

    Article  CAS  Google Scholar 

  54. Mendes, P, & Kell, D. (1998). Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics (Oxford England), 14(10), 869–883.

    Article  CAS  Google Scholar 

  55. Moles, C G, Mendes, P, & Banga, J R. (2003). Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome research, 13(11), 2467–2474.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. Myung, I J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47(1), 90–100.

    Article  Google Scholar 

  57. Nunez, P, & Srinivasan, R. (2006). Electric fields of the brain: the neurophysics of EEG. New York - Oxford: Oxford University Press.

    Google Scholar 

  58. Øksendal, B. (2007). Stochastic differential equations an introduction with applications. Berlin: Springer-Verlag.

    Google Scholar 

  59. Ostwald, D, & Starke, L. (2016). Probabilistic delay differential equation modeling of event-related potentials. NeuroImage, 136, 227–257.

    PubMed  Article  Google Scholar 

  60. Ostwald, D, Kirilina, E, Starke, L, & Blankenburg, F. (2014). A tutorial on variational bayes for latent linear stochastic time-series models. Journal of Mathematical Psychology, 60, 1–19.

    Article  Google Scholar 

  61. Papamichail, I, & Adjiman, C. (2004). Global optimization of dynamic systems. Computers & Chemical Engineering, 28(3), 403–415.

    Article  CAS  Google Scholar 

  62. Pardalos, P M, Romeijn, H E, & Tuy, H. (2000). Recent developments and trends in global optimization. Journal of Computational and Applied Mathematics, 124(1), 209–228.

    Article  Google Scholar 

  63. Patil, A, Huard, D, & Fonnesbeck, CJ. (2010). Pymc: Bayesian stochastic modelling in python. Journal of Statistical Software.

  64. Penny, W. (2012). Comparing dynamic causal models using aic, bic and free energy. NeuroImage, 59(1), 319–330.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. Pinotsis, D, Moran, R, & Friston, K. (2012). Dynamic causal modeling with neural fields. NeuroImage, 59 (2), 1261–1274.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. Prasad, J, & Souradeep, T. (2012). Cosmological parameter estimation using particle swarm optimization. Physical Review D, 85(12), 123,008.

    Article  CAS  Google Scholar 

  67. Quaiser, T, & Monnigmann, M. (2009). Systematic identifiability testing for nambiguous mechanistic modeling - application to JAK-STAT, MAP kinase, and NF-kB signaling pathway models. BMC Systems Biology, 3, 50.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. Rateitschak, K, Winter, F, Lange, F, Jaster, R, & Wolkenhaue, O. (2012). Parameter identifiability and sensitivity analysis predict targets for enhancement of STAT1 activity in pancreatic cancer and stellate cells. PLoS Computational Biology, 8, 12.

    Article  CAS  Google Scholar 

  69. Raue, A, Kreutz, C, Maiwald, T, Bachmann, J, Schilling, M, & Timmer, U K J. (2009). Structural and practical identifiability analysis of partially observable dynamical models by exploiting the profile likelihood. Bioinformatics, 25, 1923–1929.

    PubMed  Article  CAS  Google Scholar 

  70. Raue, A, Kreutz, C, Maiwald, T, Klingmuller, U, & Timmer, J. (2011). Addressing parameter identifiability by model-based experimentation. IET Systems Biology, 5(2), 120.

    PubMed  Article  CAS  Google Scholar 

  71. Rawlings, J, Pantula, S, & DA, D. (1998). Applied regression analysis: a research tool. New York: Springer-Verlag.

    Google Scholar 

  72. Razi, A, Kahan, J, Rees, G, & Friston, K J. (2015). Construct validation of a dcm for resting state fmri. NeuroImage, 106, 1–14.

    PubMed  PubMed Central  Article  Google Scholar 

  73. Rennie, C, Robinson, P, & Wright, J. (2002). Unified neurophysical model of EEG spectra and evoked potentials. Biological Cybernetics, 86, 457–471.

    PubMed  Article  CAS  Google Scholar 

  74. Risken, H. (1984). The Fokkerr-Planck equation. Berlin: Springer.

    Google Scholar 

  75. Risken, H. (1996). The Fokker-Planck equation: methods of solutions and applications. New York: Springer-Verlag.

    Google Scholar 

  76. Robinson, P, Rennie, C, Wright, J, Bahramali, H, Gordon, E, & Rowe, D. (2001a). Prediction of electroencephalographic spectra from neurophysiology. Physical Review E, 63, 201,903.

  77. Robinson, P, Loxley, P, & Rennie, S C. (2001b). Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. Physical Review E, 63, 041,909.

  78. Robinson, P, Rennie, C, & Rowe, D. (2002). Dynamics of large-scale brain activity in normal arousal states and eplieptic seizures. Physical Review E, 65(4), 041,924.

    Article  CAS  Google Scholar 

  79. Rodriguez-Fernandez, M, Egea, JA, & Banga, JR. (2006a). Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinformatics, 7, 483.

  80. Rodriguez-Fernandez, M, Mendes, P, & Banga, JR. (2006b). A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Biosystems, 83, 248–265.

  81. Rodriguez-Fernandez, M, Rehberg, M, Kremling, A, & Banga, J R. (2013). Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems. BMC Systems Biology, 7(1), 76.

    PubMed  PubMed Central  Article  Google Scholar 

  82. Rowe, D, Robinson, P, & Rennie, C. (2004). Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics. Journal of Theoretical Biology, 231(3), 413–433.

    PubMed  Article  Google Scholar 

  83. Schmeink, K, Adam, R, & Hoeher, P A. (2011). Joint communication and positioning based on soft channel parameter estimation. EURASIP Journal on Wireless Communications and Networking, 185.

  84. Schwaab, M, Biscaia, JrE C, Monteiro, J L, & Pinto, J C. (2008). Nonlinear parameter estimation through particle swarm optimization. Chemical Engineering Science, 63(6), 1542–1552.

    Article  CAS  Google Scholar 

  85. Seber, G, & Wild, C. (1997). Non linear regression. New York: Wiley.

    Google Scholar 

  86. Sleigh, J W, Leslie, K, & Voss, L. (2010). The effect of skin incision on the electroencephalogram during general anesthesia maintained with propofol or desflurane. Journal of Clinical Monitoring and Computing, 24(4), 307–318.

    PubMed  Article  Google Scholar 

  87. Stelling, J. (2004). Mathematical models in microbial systems biology. Current Opinion in Microbiology, 7(5), 513–518.

    PubMed  Article  Google Scholar 

  88. Svensson, C M, Coombes, S, & Peirce, J W. (2012). Using evolutionary algorithms for fitting high-dimensional models to neuronal data. Neuroinformatics, 10(2), 199–218.

    PubMed  PubMed Central  Article  Google Scholar 

  89. Tashkova, K, Korosec, P, Silc, J, Todorovski, L, & Dzeroski, S. (2011). Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis. BMC Systems Biology, 5(1), 159.

    PubMed  PubMed Central  Article  Google Scholar 

  90. Tsai, K Y, & Wang, F S. (2005). Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics, 21(7), 1180–1188.

    PubMed  Article  CAS  Google Scholar 

  91. Van Albada, S, Kerr, C, Robinson, P, Chiang, A, & Rennie, C. (2010). Neurophysiological changes with age probed by inverse modeling of eeg spectra. Clinical Neurophysiology, 121, 21–38.

    PubMed  Article  Google Scholar 

  92. van Riel, N A. (2006). Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Briefings in Bioinformatics, 7(4), 364–374.

    PubMed  Article  Google Scholar 

  93. Victor, J, Drover, J, Conte, M, & Schiff, N. (2011). Mean-field modeling of thalamocortical dynamics and a model-driven approach to EEG analysis. Proceedings of the National Academy of Sciences of the United States of America, 118, 15,631–15,638.

    Article  Google Scholar 

  94. Villaverde, A F, & Banga, J. (2013). Reverse engineering and identification in systems biology: strategies, perspectives and challenges. Journal of The Royal Society Interface, 11, 91.

    Article  Google Scholar 

  95. Voit, E, & Almeida, J. (2004). Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformativs, 20, 1670–1681.

    Article  CAS  Google Scholar 

  96. Walter, E, & Pronzato, L. (1997). Identification of parametric models from experimental data. Springer.

  97. Wang, M, & Uhlenbeck, G. (1945). On the theory of the brownian motion. Physical Review Modelling, 17(2), 323.

    Article  Google Scholar 

  98. Wilkinson, D. (2011). Stochastic modelling for systems biology, 2nd edn. CRC Press.

  99. Zhan, C, & Yeung, L F. (2011). Parameter estimation in systems biology models using spline approximation. BMC Systems Biology, 5(1), 14.

    PubMed  PubMed Central  Article  Google Scholar 

  100. Zi, Z. (2011). Sensitivity analysis approaches applied to systems biology models. IET System Biology, 5(6), 458–469.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the European Research Council for support under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 257253.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Meysam Hashemi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 312 KB)

(PDF 190 KB)

(PDF 153 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M., Hutt, A., Buhry, L. et al. Optimal Model Parameter Estimation from EEG Power Spectrum Features Observed during General Anesthesia. Neuroinform 16, 231–251 (2018). https://doi.org/10.1007/s12021-018-9369-x

Download citation

Keywords

  • Parameter estimation
  • Optimization
  • Stochastic differential equation
  • Spectral power
  • General anesthesia