A Spatial Registration Toolbox for Structural MR Imaging of the Aging Brain

  • Marco Ganzetti
  • Quanying Liu
  • Dante Mantini
  • Alzheimer’s Disease Neuroimaging Initiative
Original Article

Abstract

During aging the brain undergoes a series of structural changes, in size, shape as well as tissue composition. In particular, cortical atrophy and ventricular enlargement are often present in the brain of elderly individuals. This poses serious challenges in the spatial registration of structural MR images. In this study, we addressed this open issue by proposing an enhanced framework for MR registration and segmentation. Our solution was compared with other approaches based on the tools available in SPM12, a widely used software package. Performance of the different methods was assessed on 229 T1-weighted images collected in healthy individuals, with age ranging between 55 and 90 years old. Our method showed a consistent improvement as compared to other solutions, especially for subjects with enlarged lateral ventricles. It also provided a superior inter-subject alignment in cortical regions, with the most marked improvement in the frontal lobe. We conclude that our method is a valid alternative to standard approaches based on SPM12, and is particularly suitable for the processing of structural MR images of brains with cortical atrophy and ventricular enlargement. The method is integrated in our software toolbox MRTool, which is freely available to the scientific community.

Keywords

Magnetic resonance imaging Spatial registration Normalization Segmentation Aging MRTool Large ventricles 

Notes

Acknowledgements

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Author MG received funding from the FWO and European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No: 665,501.

Supplementary material

12021_2018_9355_MOESM1_ESM.docx (831 kb)
ESM 1 (DOCX 831 kb)

References

  1. Acosta-Cabronero, J., Williams, G. B., Pereira, J. M. S., Pengas, G., & Nestor, P. J. (2008). The impact of skull-stripping and radio-frequency bins correction on grey-matter segmentation for voxel-based morphometry. NeuroImage, 39, 1654–1665.CrossRefPubMedGoogle Scholar
  2. Allen, J. S., Bruss, J., Mehta, S., Grabowski, T., Brown, C. K., & Damasio, H. (2008). Effects of spatial transformation on regional brain volume estimates. NeuroImage, 42, 535–547.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Apostolova, L. G., Green, A. E., Babakchanian, S., Hwang, K. S., Chou, Y. Y., Toga, A. W., & Thompson, P. M. (2012). Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer disease. Alzheimer Disease and Associated Disorders, 26, 17–27.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ashburner, J., & Friston, K. J. (1999). Nonlinear spatial normalization using basis functions. Human Brain Mapping, 7, 254–266.CrossRefPubMedGoogle Scholar
  5. Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26, 839–851.CrossRefPubMedGoogle Scholar
  6. Brett, M., Johnsrude, I. S., & Owen, A. M. (2002). The problem of functional localization in the human brain. Nature Reviews Neuroscience, 3, 243–249.CrossRefPubMedGoogle Scholar
  7. Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., & Marchal, G. (1995). Automated multi-modality image registration based on information theory. Information Processing in Medical Imaging, 3, 263–274.Google Scholar
  8. Colloby, S. J., Firbank, M. J., Vasudev, A., Parry, S. W., Thomas, A. J., & O'brien, J. T. (2011). Cortical thickness and VBM-DARTEL in late-life depression. Journal of Affective Disorders, 133, 158–164.CrossRefPubMedGoogle Scholar
  9. Crivello, F., Schormann, T., Tzourio-Mazoyer, N., Roland, P. E., Zilles, K., & Mazoyer, B. M. (2002). Comparison of spatial normalization procedures and their impact on functional maps. Human Brain Mapping, 16, 228–250.CrossRefPubMedGoogle Scholar
  10. Dade, L. A., Gao, F. Q., Kovacevic, N., Roy, P., Rockel, C., O'toole, C. M., Lobaugh, N. J., Feinstein, A., Levine, B., & Black, S. E. (2004). Semiautomatic brain region extraction: A method of parcellating brain regions from structural magnetic resonance images. NeuroImage, 22, 1492–1502.CrossRefPubMedGoogle Scholar
  11. Dewey, J., Hana, G., Russell, T., Price, J., Mccaffrey, D., Harezlak, J., Sem, E., Anyanwu, J. C., Guttmann, C. R., Navia, B., Cohen, R., Tate, D. F., & Consortium, H. N. (2010). Reliability and validity of MRI-based automated volumetry software relative to auto-assisted manual measurement of subcortical structures in HIV-infected patients from a multisite study. NeuroImage, 51, 1334–1344.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dong, L., & Boyer, A. L. (1995). An image correlation procedure for digitally reconstructed radiographs and electronic portal images. International Journal of Radiation Oncology Biology Physics, 33, 1053–1060.CrossRefGoogle Scholar
  13. Eloyan, A., Shou, H. C., Shinohara, R. T., Sweeney, E. M., Nebel, M. B., Cuzzocreo, J. L., Calabresi, P. A., Reich, D. S., Lindquist, M. A., & Crainiceanu, C. M. (2014). Health effects of lesion localization in multiple sclerosis: Spatial registration and confounding adjustment. PLoS One, 9, e107263.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fein, G., Landman, B., Tran, H., Barakos, J., Moon, K., Di Sclafani, V., & Shumway, R. (2006). Statistical parametric mapping of brain morphology: Sensitivity is dramatically increased by using brain-extracted images as inputs. NeuroImage, 30, 1187–1195.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Van Der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A. M. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.CrossRefPubMedGoogle Scholar
  16. Fischmeister, F. P. S., Hollinger, I., Klinger, N., Geissler, A., Wurnig, M. C., Matt, E., Rath, J., Robinson, S. D., Trattnig, S., & Beisteiner, R. (2013). The benefits of skull stripping in the normalization of clinical fMRI data. Neuroimage Clinical, 3, 369–380.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ganzetti, M., Wenderoth, N., & Mantini, D. (2015). Quantitative evaluation of intensity inhomogeneity correction methods for structural MR brain images. Neuroinformatics, 14, 5–21.CrossRefPubMedCentralGoogle Scholar
  18. Ganzetti, M., Wenderoth, N., & Mantini, D. (2016). Intensity inhomogeneity correction of structural MR images: A data-driven approach to define input algorithm parameters. Frontiers in Neuroinformatics, 10, 10.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Han, Z., Thornton-Wells, T. A., Dykens, E. M., Gore, J. C., & Dawant, B. M. (2012). Effect of nonrigid registration algorithms on deformation-based morphometry: A comparative study with control and Williams syndrome subjects. Magnetic Resonance Imaging, 30, 774–788.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hoeksma, M. R., Kenemans, J. L., Kemner, C., & Van Engeland, H. (2005). Variability in spatial normalization of pediatric and adult brain images. Clinical Neurophysiology, 116, 1188–1194.CrossRefPubMedGoogle Scholar
  21. Izquierdo-Garcia, D., Hansen, A. E., Forster, S., Benoit, D., Schachoff, S., Furst, S., Chen, K. T., Chonde, D. B., & Catana, C. (2014). An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: Application to simultaneous PET/MR brain imaging. Journal of Nuclear Medicine, 55, 1825–1830.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kennedy, K. M., Erickson, K. I., Rodrigue, K. M., Voss, M. W., Colcombe, S. J., Kramer, A. F., Acker, J. D., & Raz, N. (2009). Age-related differences in regional brain volumes: A comparison of optimized voxel-based morphometry to manual volumetry. Neurobiology of Aging, 30, 1657–1676.CrossRefPubMedGoogle Scholar
  23. Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M. C., Christensen, G. E., Collins, D. L., Gee, J., Hellier, P., Song, J. H., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R. P., Mann, J. J., & Parsey, R. V. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46, 786–802.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kleinbaum, D. G., Kupper, L. L., Nizam, A., & Muller, K. E. (2007). Applied regression analysis and other multivariable methods. Belmont: Duxbury Press.Google Scholar
  25. Lemieux, L., Jagoe, R., Fish, D. R., Kitchen, N. D., & Thomas, D. G. T. (1994). A patient-to-computed-tomography image registration method based on digitally reconstructed radiographs. Medical Physics, 21, 1749–1760.CrossRefPubMedGoogle Scholar
  26. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., & Suetens, P. (1997). Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging, 16, 187–198.CrossRefPubMedGoogle Scholar
  27. Martino, M. E., De Villoria, J. G., Lacalle-Aurioles, M., Olazaran, J., Cruz, I., Navarro, E., Garcia-Vazquez, V., Carreras, J. L., & Desco, M. (2013). Comparison of different methods of spatial normalization of FDG-PET brain images in the voxel-wise analysis of MCI patients and controls. Annals of Nuclear Medicine, 27, 600–609.CrossRefPubMedGoogle Scholar
  28. Mcdonald, C. R., Mcevoy, L. K., Gharapetian, L., Fennema-Notestine, C., Hagler, D. J., Holland, D., Koyama, A., Brewer, J. B., Dale, A. M., & Initi, A. S. D. N. (2009). Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology, 73, 457–465.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pallant, J. (2013). SPSS survival manual: A step by step guide to data analysis using IBM Spss. Allen & Unwin.Google Scholar
  30. Peelle, J. E., Cusack, R., & Henson, R. N. A. (2012). Adjusting for global effects in voxel-based morphometry: Gray matter decline in normal aging. NeuroImage, 60, 1503–1516.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C., Harvey, D. J., Jack Jr., C. R., Jagust, W. J., Shaw, L. M., Toga, A. W., Trojanowski, J. Q., & Weiner, M. W. (2010). Alzheimer's disease neuroimaging initiative (ADNI): Clinical characterization. Neurology, 74, 201–209.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pohl, K. M., Fisher, J., Levitt, J. J., Shenton, M. E., Kikinis, R., Grimson, W. E. L., & Wells, W. M. (2005). A unifying approach to registration, segmentation, and intensity correction. Medical Image Computing and Computer Assisted Intervention, 8(Pt 1), 310–318.PubMedPubMedCentralGoogle Scholar
  33. Pu, F., Xu, L. Q., Li, D. Y., Fan, Y. B., Niu, H. J., & Li, S. Y. (2013). Comparison of two nonlinear registration techniques to investigate brain atrophy patterns in normal aging. Journal of Neuroradiology, 40, 326–334.CrossRefGoogle Scholar
  34. Salonen, O., Autti, T., Raininko, R., Ylikoski, A., & Erkinjuntti, T. (1997). MRI of the brain in neurologically healthy middle-aged and elderly individuals. Neuroradiology, 39, 537–545.CrossRefPubMedGoogle Scholar
  35. Shattuck, D. W., Sandor-Leahy, S. R., Schaper, K. A., Rottenberg, D. A., & Leahy, R. M. (2001). Magnetic resonance image tissue classification using a partial volume model. NeuroImage, 13, 856–876.CrossRefPubMedGoogle Scholar
  36. Van Leemput, K., Maes, F., Vandermeulen, D., & Suetens, P. (1999a). Automated model-based bias field correction of MR images of the brain. IEEE Transactions on Medical Imaging, 18, 885–896.CrossRefPubMedGoogle Scholar
  37. Van Leemput, K., Maes, F., Vandermeulen, D., & Suetens, P. (1999b). Automated model-based tissue classification of MR images of the brain. IEEE Transactions on Medical Imaging, 18, 897–908.CrossRefPubMedGoogle Scholar
  38. Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J., Green, R. C., Harvey, D., Jack, C. R., Jagust, W., Liu, E., Morris, J. C., Petersen, R. C., Saykin, A. J., Schmidt, M. E., Shaw, L., Siuciak, J. A., Soares, H., Toga, A. W., Trojanowski, J. Q., & Alzheimer's Disease Neuroimaging, I. (2012). The Alzheimer's disease neuroimaging initiative: A review of papers published since its inception. Alzheimers Dement, 8, S1–68.CrossRefPubMedGoogle Scholar
  39. Wells 3rd, W. M., Viola, P., Atsumi, H., Nakajima, S., & Kikinis, R. (1996). Multi-modal volume registration by maximization of mutual information. Medical Image Analysis, 1, 35–51.CrossRefPubMedGoogle Scholar
  40. Whitwell, J. L., Shiung, M. M., Przybelski, S. A., Weigand, S. D., Knopman, D. S., Boeve, B. F., Petersen, R. C., & Jack, C. R. (2008). MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology, 70, 512–520.CrossRefPubMedGoogle Scholar
  41. Wilke, M., Schmithorst, V. J., & Holland, S. K. (2002). Assessment of spatial normalization of whole-brain magnetic resonance images in children. Human Brain Mapping, 17, 48–60.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marco Ganzetti
    • 1
  • Quanying Liu
    • 1
    • 2
  • Dante Mantini
    • 1
    • 2
    • 3
  • Alzheimer’s Disease Neuroimaging Initiative
  1. 1.Laboratory of Movement Control and NeuroplasticityKU LeuvenLeuvenBelgium
  2. 2.Neural Control of Movement LabETH ZurichZurichSwitzerland
  3. 3.Department of Experimental PsychologyOxford UniversityOxfordUK

Personalised recommendations