, Volume 15, Issue 2, pp 185–198 | Cite as

Ensemble Neuron Tracer for 3D Neuron Reconstruction

  • Ching-Wei WangEmail author
  • Yu-Ching Lee
  • Hilmil Pradana
  • Zhi Zhou
  • Hanchuan Peng
Original Article


Tracing of neuron paths is important in neuroscience. Recent studies have shown that it is possible to segment and reconstruct three-dimensional morphology of axons and dendrites using fully automatic neuron tracing methods. A specific tracer may be better than others for a specific dataset, but another tracer could perform better for some other datasets. Ensemble of learners is an effective way to improve learning accuracy in machine learning. We developed automatic ensemble neuron tracers, which consistently perform well on 57 datasets of 5 species collected from 7 laboratories worldwide. Quantitative evaluation based on the data generated by human annotators shows that the proposed ensemble tracers are valuable for 3D neuron tracing and can be widely applied to different datasets.


3D neuron reconstruction Ensemble neuron tracer 



Ching-Wei Wang, Hilmil Pradana and Yu-Ching Lee were supported by the Ministry of Science and Technology of Taiwan, under a grant (MOST-105-2221-E-011-121-MY2). Zhi Zhou and Hanchuan Peng were supported by Allen Institute for Brain Science, Seattle, WA, USA.

Supplementary material

12021_2017_9325_MOESM1_ESM.pdf (1005 kb)
(PDF 0.98 MB)
12021_2017_9325_MOESM2_ESM.7z (974 kb)
(7Z 974 KB)
12021_2017_9325_MOESM3_ESM.pdf (782 kb)
(PDF 781 KB) (985 kb)
(ZIP 985 KB)


  1. Abramoff, M. D., et al. (2004). Image processing with ImageJ. Biophotonics International, 11, 36–42.Google Scholar
  2. Breiman, L. (1996). Bagging predictors. International Journal Machine Learning, 24, 134140.Google Scholar
  3. Brown, K. M., et al. (2005). A cross-platform freeware tool for digital reconstruction of neuronal arborizations from image stacks. Neuroinformatics, 3, 343–359.CrossRefPubMedGoogle Scholar
  4. Chiang, et al. (2011). Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Current Biology, 21, 1–11.Google Scholar
  5. Chklovskii, D. B. (2004). Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron, 43, 609–617.PubMedGoogle Scholar
  6. Choromanska, A., et al. (2012). Automatic reconstruction of neural morphologies with multi-scale tracking. Neural Circuit, 6. doi: 10.3389/fncir.2012.00025.
  7. Collins, T. J. (2007). ImageJ for microscopy. Biotechniques, 43, 25–30.CrossRefPubMedGoogle Scholar
  8. Feng, L., et al. (2014). neuTube 1.0: A New Design for Efficient Neuron Reconstruction Software Based on The SWC Format eNeuro,  10.1523/ENEURO.0049-14.
  9. Fiala, J. C. (2005). Reconstruct: A free editor for serial section microscopy. Journal of Microscopy, 218, 52–61.CrossRefPubMedGoogle Scholar
  10. Freund, Y., & Schapire, R. (1999). A Short Introduction to Boosting. Journal of Japanese Society for Artificial Intelligence, 14(5), 771– 780.Google Scholar
  11. Kalisman, N., et al. (2003). Deriving physical connectivity from neuronal morphology. Biological Cybernetics, 88, 210–218.CrossRefPubMedGoogle Scholar
  12. Krichmar, J. L., et al. (2002). Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Research, 941, 11–28.CrossRefPubMedGoogle Scholar
  13. Kim, E. J., et al. (2016). Neuroscience: Optimized tracing of neural circuits. Nature Methods, 13, 470.CrossRefGoogle Scholar
  14. Li, A., et al. (2010). Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science, 330, 1404– 1408.CrossRefPubMedGoogle Scholar
  15. Lu, J. (2009). Semi-automated reconstruction of neural processes from large numbers of fluorescence images. PLoS One, 4, e5655.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.CrossRefPubMedGoogle Scholar
  17. Meijering, E. (2010). Neuron Tracing in Perspective. Cytometry, 77, 693–704.CrossRefPubMedGoogle Scholar
  18. Ming, X., Li, A., Wu, J., Yan, C., Ding, W., Gong, H., Zeng, S., & Liu, Q. (2013). Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling. PloS one, 8, e84557.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Peng, H., Ruan, R., Long, F., Simpson, J. H., & Myers, E.W. (2010). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28, 348–353.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Peng, H., Ruan, Z., Atasoy, D., & Sternson, S. (2010). Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model. Bioinformatics, 26, i38–i46.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Peng, H., Long, F., & Myers, G. (2011). Automatics 3D neuron tracing using all-path pruning. Bioinformatics, 27, i239–i247.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Peng, H., et al. (2015). BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron, 87, 252–256.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6(3), 21–45.CrossRefGoogle Scholar
  24. Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review, 33, 1V394.CrossRefGoogle Scholar
  25. Schaefer, A. T., et al. (2003). Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. Journal of Neurophysiology, 89, 3143–3154.CrossRefPubMedGoogle Scholar
  26. Sholl, D. A. (1956). The measurable parameters of the cerebral cortex and their significance in its organization. Progress in Neurobiology, 2, 324–33.Google Scholar
  27. Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic integration. Nature Reviews Neuroscience, 4, 206–221.CrossRefGoogle Scholar
  28. Viola, P., & Jones, M. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137V154.CrossRefGoogle Scholar
  29. Wang, Y., Narayanaswamy, A., Tsai, C. -L., & Roysam, B. (2011). A broadly applicable 3-D neuron tracing method based on open-curve snake. Neuroinformatics, 9, 193–217.CrossRefPubMedGoogle Scholar
  30. Wearne, S., Rodriguez, A., Ehlenberger, D., Rocher, A., Henderson, S., & Hof, P. (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136, 661–680.CrossRefPubMedGoogle Scholar
  31. Xiao, H., & Peng, H. (2013). APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics, 29, 1448–1454.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Yang, J., Gonzalez-Bellido, P.T., & Peng, H. (2013). A distance-field based automatic neuron tracing method. BMC Bioinformatics, 14. doi: 10.1186/1471-2105-14-93.
  33. Zhou, Z., Sorensen, S., Zeng, H., Hawrylycz, M., & Peng, H. (2014). Adaptive image enhancement for tracing 3D morphologies of neurons and brain vasculatures. Neuroinform, 13, 153–166.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Graduate Institute of Biomedical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan
  2. 2.NTUST Center of Computer Vision and Medical ImagingNational Taiwan University of Science and TechnologyTaipeiTaiwan
  3. 3.Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and TechnologyTaipeiTaiwan
  4. 4.Allen Institute for Brain ScienceSeattleUSA

Personalised recommendations