Skip to main content

Advertisement

Log in

Ensemble Neuron Tracer for 3D Neuron Reconstruction

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Tracing of neuron paths is important in neuroscience. Recent studies have shown that it is possible to segment and reconstruct three-dimensional morphology of axons and dendrites using fully automatic neuron tracing methods. A specific tracer may be better than others for a specific dataset, but another tracer could perform better for some other datasets. Ensemble of learners is an effective way to improve learning accuracy in machine learning. We developed automatic ensemble neuron tracers, which consistently perform well on 57 datasets of 5 species collected from 7 laboratories worldwide. Quantitative evaluation based on the data generated by human annotators shows that the proposed ensemble tracers are valuable for 3D neuron tracing and can be widely applied to different datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramoff, M. D., et al. (2004). Image processing with ImageJ. Biophotonics International, 11, 36–42.

    Google Scholar 

  • Breiman, L. (1996). Bagging predictors. International Journal Machine Learning, 24, 134140.

    Google Scholar 

  • Brown, K. M., et al. (2005). A cross-platform freeware tool for digital reconstruction of neuronal arborizations from image stacks. Neuroinformatics, 3, 343–359.

    Article  PubMed  Google Scholar 

  • Chiang, et al. (2011). Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Current Biology, 21, 1–11.

  • Chklovskii, D. B. (2004). Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron, 43, 609–617.

    CAS  PubMed  Google Scholar 

  • Choromanska, A., et al. (2012). Automatic reconstruction of neural morphologies with multi-scale tracking. Neural Circuit, 6. doi:10.3389/fncir.2012.00025.

  • Collins, T. J. (2007). ImageJ for microscopy. Biotechniques, 43, 25–30.

    Article  PubMed  Google Scholar 

  • Feng, L., et al. (2014). neuTube 1.0: A New Design for Efficient Neuron Reconstruction Software Based on The SWC Format eNeuro, 10.1523/ENEURO.0049-14.

  • Fiala, J. C. (2005). Reconstruct: A free editor for serial section microscopy. Journal of Microscopy, 218, 52–61.

    Article  CAS  PubMed  Google Scholar 

  • Freund, Y., & Schapire, R. (1999). A Short Introduction to Boosting. Journal of Japanese Society for Artificial Intelligence, 14(5), 771– 780.

    Google Scholar 

  • Kalisman, N., et al. (2003). Deriving physical connectivity from neuronal morphology. Biological Cybernetics, 88, 210–218.

    Article  PubMed  Google Scholar 

  • Krichmar, J. L., et al. (2002). Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Research, 941, 11–28.

    Article  CAS  PubMed  Google Scholar 

  • Kim, E. J., et al. (2016). Neuroscience: Optimized tracing of neural circuits. Nature Methods, 13, 470.

    Article  Google Scholar 

  • Li, A., et al. (2010). Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science, 330, 1404– 1408.

    Article  CAS  PubMed  Google Scholar 

  • Lu, J. (2009). Semi-automated reconstruction of neural processes from large numbers of fluorescence images. PLoS One, 4, e5655.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.

    Article  CAS  PubMed  Google Scholar 

  • Meijering, E. (2010). Neuron Tracing in Perspective. Cytometry, 77, 693–704.

    Article  PubMed  Google Scholar 

  • Ming, X., Li, A., Wu, J., Yan, C., Ding, W., Gong, H., Zeng, S., & Liu, Q. (2013). Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling. PloS one, 8, e84557.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Ruan, R., Long, F., Simpson, J. H., & Myers, E.W. (2010). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28, 348–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Ruan, Z., Atasoy, D., & Sternson, S. (2010). Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model. Bioinformatics, 26, i38–i46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Long, F., & Myers, G. (2011). Automatics 3D neuron tracing using all-path pruning. Bioinformatics, 27, i239–i247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H., et al. (2015). BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron, 87, 252–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6(3), 21–45.

    Article  Google Scholar 

  • Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review, 33, 1V394.

    Article  Google Scholar 

  • Schaefer, A. T., et al. (2003). Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. Journal of Neurophysiology, 89, 3143–3154.

    Article  PubMed  Google Scholar 

  • Sholl, D. A. (1956). The measurable parameters of the cerebral cortex and their significance in its organization. Progress in Neurobiology, 2, 324–33.

    Google Scholar 

  • Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic integration. Nature Reviews Neuroscience, 4, 206–221.

    Article  Google Scholar 

  • Viola, P., & Jones, M. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137V154.

    Article  Google Scholar 

  • Wang, Y., Narayanaswamy, A., Tsai, C. -L., & Roysam, B. (2011). A broadly applicable 3-D neuron tracing method based on open-curve snake. Neuroinformatics, 9, 193–217.

    Article  PubMed  Google Scholar 

  • Wearne, S., Rodriguez, A., Ehlenberger, D., Rocher, A., Henderson, S., & Hof, P. (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136, 661–680.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, H., & Peng, H. (2013). APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics, 29, 1448–1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Gonzalez-Bellido, P.T., & Peng, H. (2013). A distance-field based automatic neuron tracing method. BMC Bioinformatics, 14. doi:10.1186/1471-2105-14-93.

  • Zhou, Z., Sorensen, S., Zeng, H., Hawrylycz, M., & Peng, H. (2014). Adaptive image enhancement for tracing 3D morphologies of neurons and brain vasculatures. Neuroinform, 13, 153–166.

    Article  Google Scholar 

Download references

Acknowledgments

Ching-Wei Wang, Hilmil Pradana and Yu-Ching Lee were supported by the Ministry of Science and Technology of Taiwan, under a grant (MOST-105-2221-E-011-121-MY2). Zhi Zhou and Hanchuan Peng were supported by Allen Institute for Brain Science, Seattle, WA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Wei Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 0.98 MB)

(7Z 974 KB)

(PDF 781 KB)

(ZIP 985 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CW., Lee, YC., Pradana, H. et al. Ensemble Neuron Tracer for 3D Neuron Reconstruction. Neuroinform 15, 185–198 (2017). https://doi.org/10.1007/s12021-017-9325-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-017-9325-1

Keywords

Navigation