Skip to main content
Log in

Multi-Atlas Library for Eliminating Normalization Failures in Non-Human Primates

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2016

Abstract

Current tools for automated skull stripping, normalization, and segmentation of non-human primate (NHP) brain MRI studies typically demonstrate high failure rates. Many of these failures are due to a poor initial estimate for the affine component of the transformation. The purpose of this study is to introduce a multi-atlas approach to overcome these limitations and drive the failure rate to near zero. A library of study-specific templates (SST) spanning three Old World primate species (Macaca fascicularis, M. mulatta, Chlorocebus aethiops) was created using a previously described unbiased automated approach. Several modifications were introduced to the methodology to improve initial affine estimation at the study-specific template level, and at the individual subject level. These involve performing multiple separate normalizations to a multi-atlas library of templates and selecting the best performing template on the basis of a covariance similarity metric. This template was then used as an initialization for the affine component of subsequent skull stripping and normalization procedures. Normalization failure rate for SST generation and individual-subject segmentation on a set of 150 NHP was evaluated on the basis of visual inspection. The previous automated template creation procedure results in excellent skull stripping, segmentation, and atlas labeling across species. Failure rate at the individual-subject level was approximately 1 %, however at the SST generation level it was 17 %. Using the new multi-atlas approach, failure rate was further reduced to zero for both SST generation and individual subject processing. We describe a multi-atlas library registration approach for driving normalization failures in NHP to zero. It is straightforward to implement, and can have application to a wide variety of existing tools, as well as in difficult populations including neonates and the elderly. This approach is also an important step towards developing fully automated high-throughput processing pipelines that are critical for future high volume multi-center NHP imaging studies for studies of drug abuse and brain health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Avants, B., & Gee, J. C. (2004). Geodesic estimation for large deformation anatomical shape averaging and interpolation. Neuroimage, 23(Suppl 1), S139–S150.

    Article  PubMed  Google Scholar 

  • Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26–41.

    Article  CAS  PubMed  Google Scholar 

  • Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. [Evaluation Studies Research Support, N.I.H., Extramural]. Neuroimage, 54(3), 2033–2044. doi:10.1016/j.neuroimage.2010.09.025.

    Article  PubMed  Google Scholar 

  • Czoty, P. W., & Nader, M. A. (2012). Individual differences in the effects of environmental stimuli on cocaine choice in socially housed male cynomolgus monkeys. [Research Support, N.I.H., Extramural]. Psychopharmacology (Berl), 224(1), 69–79. doi:10.1007/s00213-011-2562-3.

    Article  CAS  Google Scholar 

  • Czoty, P. W., & Nader, M. A. (2015). Effects of oral and intravenous administration of buspirone on food-cocaine choice in socially housed male cynomolgus monkeys [Research Support, N.I.H., Extramural]. Neuropsychopharmacology, 40(5), 1072–1083. doi:10.1038/npp.2014.300.

    Article  CAS  PubMed  Google Scholar 

  • Czoty, P. W., Gage, H. D., Garg, P. K., Garg, S., & Nader, M. A. (2013). ). Effects of repeated treatment with the dopamine D2/D3 receptor partial agonist aripiprazole on striatal D2/D3 receptor availability in monkeys. Psychopharmacology (Berl). doi:10.1007/s00213-013-3274-7.

    Google Scholar 

  • Doshi, J., Erus, G., Ou, Y., Gaonkar, B., & Davatzikos, C. (2013). Multi-atlas skull-stripping. Academic Radiology, 20(12), 1566–1576. doi:10.1016/j.acra.2013.09.010.

    Article  PubMed  Google Scholar 

  • Fedorov, A., Li, X., Pohl, K. M., Bouix, S., Styner, M., Addicott, M., et al. (2011). Atlas-guided segmentation of vervet monkey brain MRI. Open Neuroimaging Journal, 5, 186–197. doi:10.2174/1874440001105010186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M. C., et al. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage, 46(3), 786–802.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maldjian, J. A., Daunais, J. B., Friedman, D. P., & Whitlow, C. T. (2014). Vervet MRI atlas and label map for fully automated morphometric analyses. Neuroinformatics, 12(4), 543–550. doi:10.1007/s12021-014-9231-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • McLaren, D. G., Kosmatka, K. J., Oakes, T. R., Kroenke, C. D., Kohama, S. G., Matochik, J. A., et al. (2009). A population-average MRI-based atlas collection of the rhesus macaque. Neuroimage, 45(1), 52–59. doi:10.1016/j.neuroimage.2008.10.058.

    Article  PubMed  Google Scholar 

  • McLaren, D. G., Kosmatka, K. J., Kastman, E. K., Bendlin, B. B., & Johnson, S. C. (2010). Rhesus macaque brain morphometry: a methodological comparison of voxel-wise approaches. Methods, 50(3), 157–165. doi:10.1016/j.ymeth.2009.10.003.

    Article  CAS  PubMed  Google Scholar 

  • Rohlfing, T., Kroenke, C. D., Sullivan, E. V., Dubach, M. F., Bowden, D. M., Grant, K. A., et al. (2012). The INIA19 template and NeuroMaps atlas for primate brain image parcellation and spatial normalization. Front Neuroinformatics, 6, 27. doi:10.3389/fninf.2012.00027.

    Article  Google Scholar 

  • Tustison, N. J., Cook, P. A., Klein, A., Song, G., Das, S. R., Duda, J. T., et al. (2014). Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. [Comparative Study Research Support, U.S. Gov't, Non-P.H.S.]. Neuroimage, 99, 166–179. doi:10.1016/j.neuroimage.2014.05.044.

    Article  PubMed  Google Scholar 

  • Wang, J., Vachet, C., Rumple, A., Gouttard, S., Ouziel, C., Perrot, E., et al. (2014). Multi-atlas segmentation of subcortical brain structures via the AutoSeg software pipeline. Front Neuroinformatics, 8, 7. doi:10.3389/fninf.2014.00007.

    Article  Google Scholar 

  • Wu, G., Kim, M., Sanroma, G., Wang, Q., Munsell, B. C., Shen, D., et al. (2015). Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition. Neuroimage, 106, 34–46. doi:10.1016/j.neuroimage.2014.11.025.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by R01DA025120, R37DA010584, (PI: MAN), R01HL087103 (PI: CAS), and AA014106 (PI: DPF). Support for this research was also provided by NIH grants NS0075107 and NS082453 (PI:JAM). The authors would also like to thank Ben Wagner for programming assistance and the Center for Biomolecular Imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Maldjian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12021-016-9314-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maldjian, J.A., Shively, C.A., Nader, M.A. et al. Multi-Atlas Library for Eliminating Normalization Failures in Non-Human Primates. Neuroinform 14, 183–190 (2016). https://doi.org/10.1007/s12021-015-9291-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-015-9291-4

Keywords

Navigation