Skip to main content
Log in

Automatic Dendritic Length Quantification for High Throughput Screening of Mature Neurons

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

High-throughput automated fluorescent imaging and screening are important for studying neuronal development, functions, and pathogenesis. An automatic approach of analyzing images acquired in automated fashion, and quantifying dendritic characteristics is critical for making such screens high-throughput. However, automatic and effective algorithms and tools, especially for the images of mature mammalian neurons with complex arbors, have been lacking. Here, we present algorithms and a tool for quantifying dendritic length that is fundamental for analyzing growth of neuronal network. We employ a divide-and-conquer framework that tackles the challenges of high-throughput images of neurons and enables the integration of multiple automatic algorithms. Within this framework, we developed algorithms that adapt to local properties to detect faint branches. We also developed a path search that can preserve the curvature change to accurately measure dendritic length with arbor branches and turns. In addition, we proposed an ensemble strategy of three estimation algorithms to further improve the overall efficacy. We tested our tool on images for cultured mouse hippocampal neurons immunostained with a dendritic marker for high-throughput screen. Results demonstrate the effectiveness of our proposed method when comparing the accuracy with previous methods. The software has been implemented as an ImageJ plugin and available for use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Ali, H., Blackmore, M., Bixby, J. L., & Lemmon, V. P. (2013). High content screening with primary neurons. In Assay Guidance Manual. Bethesda: Eli Lilly & Company and the National Center for Advancing Translational Sciences.

  • Al-Kofahi, K. A., Lasek, S., Szarowski, D. H., Pace, C. J., Nagy, G., Turner, J. N., et al. (2002). Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Transactions on Information Technology in Biomedicine, 6(2), 171–187.

    Article  PubMed  Google Scholar 

  • Becker, L., Armstrong, D., & Chan, F. (1986). Dendritic atrophy in children with Down’s syndrome. Annals of Neurology, 10(10), 981–991.

    Google Scholar 

  • Brewer, G. J., & Cotman, C. W. (1989). Survival and growth of hippocampal neurons in defined medium at low density: advantages of a sandwich culture technique or low oxygen. Brain Research, 494, 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Can, A., Shen, H., Turner, J. N., Tanenbaum, H. L., & Roysam, B. (1999). Rapid automated tracing and feature extraction from retinal fundus images. IEEE Transactions on Information Technology in Biomedicine, 3(2), 125–138.

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.

    Article  Google Scholar 

  • Dunkle, R. (2003). Role of image informatics in accelerating drug discovery and development. Drug Discovery World, 5, 75–82.

    Google Scholar 

  • Faherty, C. J., Kerley, D., & Smeyne, R. J. (2003). A Golgi-Cox morphological analysis of neuronal changes induced by environmental enrichment. Developmental Brain Research, 141, 55–61.

    Article  CAS  PubMed  Google Scholar 

  • Fox, S. (2003). Accommodating Cells in HTS. Drug Discovery World, 5, 21–30.

    Google Scholar 

  • Fredman, M. L., & Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the Association for Computing Machinery, 34(3), 596–615.

    Article  Google Scholar 

  • Glausier, J., & Lewis, D. (2013). Dendritic spine pathology in schizophrenia. Neuroscience, 251, 90–107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hawker, C. D. (2007). Laboratory automation: total and subtotal. Laboratory Management, 27(4), 749–770.

    Google Scholar 

  • Liu, Y. (2011). The DIADEM and beyond. Neuroinformatics, 99–102.

  • Meijering, E. (2010). Neuron tracing in perspective. Cytometry. Part A, 77(7), 693–704.

    Article  Google Scholar 

  • Meijering, E., Jacob, M., Sarria, J., Steiner, P., Hirling, H., & Unser, M. (2004). Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry. Part A, 58(2), 167–176.

    Article  CAS  Google Scholar 

  • Myatt, D. R., Hadlington, T., Ascoli, G. A., & Nasuto, S. J. (2012). Neuromantic - from semi-manual to semi-automatic reconstruction of neuron morphology. Frontiers in Neuroinformatics, 6, 4.

    Article  PubMed Central  PubMed  Google Scholar 

  • Narro, M. L., Yang, F., Kraft, R., Wenk, C., Efrat, A., & Restifo, L. L. (2007). NeuronMetrics: Software for semi-automated processing of cultured neuron images. Brain Research, 113b, 57–7 5.

  • Nieland, T. J., Logan, D. J., Saulnier, J., Lam, D., Johnson, C., Root, D. E., et al. (2014). High content image analysis identifies novel regulators of synaptogenesis in a high-throughput RNAi screen of primary neurons. PLoS ONE, 9(3), e91744.

    Article  PubMed Central  PubMed  Google Scholar 

  • Otsu, N. (1975). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.

    Google Scholar 

  • Patt, S., Gertz, H., Gerhard, L., & Cervós-Navarro, J. (1991). Pathological changes in dendrites of substantia nigra neurons in Parkinson’s disease: a Golgi study. Histology and Histopathology, 6(3), 373–380.

    CAS  PubMed  Google Scholar 

  • Peng, H., Long, F., Zhao, T., & Myers, E. (2011). Proof-editing is The Bottleneck of 3D Neuron Reconstruction: The Problem and Solutions. Neuroinformatics.

  • Peng, H., Ruan, Z., Long, F., Simpson, J. H., & Myers, E. W. (2010). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28(4), 348–353.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pittenger, C., & Duman, R. S. (2008). Stress, depression, and neuroplasticity: a convergence. Neuropsychopharmacology Reviews, 33, 88–109.

    Article  CAS  PubMed  Google Scholar 

  • Pool, M., Thiemann, J., Bar-Or, A., & Fournier, A. E. (2008). NeuriteTracer: a novel imagej plugin for automated. Journal of Neuroscience Methods, 168(1), 134–139.

    Article  PubMed  Google Scholar 

  • Rodriguez, A., Ehlenberger, D., Hof, P., & Wearne, S. (2006). Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images. Nature Protocol, 1(4), 2152–61.

    Article  CAS  Google Scholar 

  • Rønn, L. C., Ralets, I., Hartz, B. P., Bech, M., Berezin, A., Berezin, V., et al. (2000). A simple procedure for quantification of neurite outgrowth based on stereological principles. Journal of Neuroscience Methods, 100(1), 25–32.

    Article  PubMed  Google Scholar 

  • Sharma, K., Choi, S.-Y., Zhang, Y., Nieland, T. J., Long, S., Li, M., et al. (2013). High-throughput genetic screen for synaptogenic factors: identification of LRP6 as critical for excitatory synapse development. Cell Reports, 5(5), 1330–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sternberg, S. R. (1983). Biomedical Image Processing. IEEE Computer, 22–34.

  • Vallotton, P., Lagerstrom, R., Sun, C., Buckley, M., Wang, D., Silva, M. D., et al. (2007). Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision. Cytometry. Part A, 71A, 889–895.

    Article  Google Scholar 

  • Wilkinson, M. H. (1998). Segmentation techniques in image analysis of Microbes. In Digital image analysis of microbes: Imaging, morphometry, fluorometry and motility techniques and applications (pp. 135–170). Chichester: John Wiley & Sons.

    Google Scholar 

  • Wu, C., Schulte, J., Sepp, K. J., Littleton, J. T., & Hong, P. (2010). Automatic robust neurite detection and morphological analysis of neuronal cell cultures in high-content screening. Neuroinformatics, 8(2), 83–100.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, Y., Zhou, X., Alexei, D., Marta, L., Adjeroh, D., Yuan, J., et al. (2007). Automated neurite extraction using dynamic programming for high-throughput screening of neuron-based assays. NeuroImage, 35(4), 1502–1515.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zuiderveld, K. (1994). Contrast limited adaptive histogram equalization. In Graphics Gems IV (pp. 474–485). Princeton: Academic Press.

Download references

Acknowledgments

We thank Dr. Hisashi Umemori, Dr. Asim Beg and Dr. Jun Zhang for their comments on the project. We thank Venkata Wunnava, Sowmya Ganugapati and Joseph Steinke who provided their help at the different stages. The project is supported by NIH R15 MH099569 (Zhou), NIH R01MH091186 (Ye), NIH R21AA021204 (Ye), and Protein Folding Disease Initiative of the University of Michigan (Ye).

Conflict of Interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smafield, T., Pasupuleti, V., Sharma, K. et al. Automatic Dendritic Length Quantification for High Throughput Screening of Mature Neurons. Neuroinform 13, 443–458 (2015). https://doi.org/10.1007/s12021-015-9267-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-015-9267-4

Keywords

Navigation