Neuroinformatics

, Volume 13, Issue 1, pp 31–46

Clinical Prediction from Structural Brain MRI Scans: A Large-Scale Empirical Study

  • Mert R. Sabuncu
  • Ender Konukoglu
  • for the Alzheimer’s Disease Neuroimaging Initiative
Original Article

Abstract

Multivariate pattern analysis (MVPA) methods have become an important tool in neuroimaging, revealing complex associations and yielding powerful prediction models. Despite methodological developments and novel application domains, there has been little effort to compile benchmark results that researchers can reference and compare against. This study takes a significant step in this direction. We employed three classes of state-of-the-art MVPA algorithms and common types of structural measurements from brain Magnetic Resonance Imaging (MRI) scans to predict an array of clinically relevant variables (diagnosis of Alzheimer’s, schizophrenia, autism, and attention deficit and hyperactivity disorder; age, cerebrospinal fluid derived amyloid-β levels and mini-mental state exam score). We analyzed data from over 2,800 subjects, compiled from six publicly available datasets. The employed data and computational tools are freely distributed (https://www.nmr.mgh.harvard.edu/lab/mripredict), making this the largest, most comprehensive, reproducible benchmark image-based prediction experiment to date in structural neuroimaging. Finally, we make several observations regarding the factors that influence prediction performance and point to future research directions. Unsurprisingly, our results suggest that the biological footprint (effect size) has a dramatic influence on prediction performance. Though the choice of image measurement and MVPA algorithm can impact the result, there was no universally optimal selection. Intriguingly, the choice of algorithm seemed to be less critical than the choice of measurement type. Finally, our results showed that cross-validation estimates of performance, while generally optimistic, correlate well with generalization accuracy on a new dataset.

Keywords

Image-based prediction Computer aided diagnosis Machine learning MRI 

Supplementary material

12021_2014_9238_MOESM1_ESM.docx (682 kb)
ESM 1(DOC 681 kb)

References

  1. Ashburner, J., & Friston, K. J. (2000). VVoxel-based morphometry: the methods. NeuroImage, 11, 805–821.Google Scholar
  2. Batmanghelich, N., Taskar, B., Davatzikos, C. (2009). A general and unifying framework for feature construction, in image-based pattern classification. Information Processing in Medical Imaging. Springer, pp. 423–434.Google Scholar
  3. Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 289–300.Google Scholar
  4. Brown, M.R., Sidhu, G.S., Greiner, R., Asgarian, N., Bastani, M., Silverstone, P.H., Greenshaw, A.J., Dursun, S.M. (2012). ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Frontiers in systems neuroscience 6.Google Scholar
  5. Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2, 27.Google Scholar
  6. Cho, Y., Seong, J.-K., Jeong, Y., & Shin, S. Y. (2012). Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. NeuroImage, 59, 2217–2230.PubMedCrossRefGoogle Scholar
  7. Chu, C., Hsu, A.-L., Chou, K.-H., Bandettini, P., & Lin, C. (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60, 59–70.PubMedCrossRefGoogle Scholar
  8. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.Google Scholar
  9. Costafreda, S. G., Chu, C., Ashburner, J., & Fu, C. H. (2009). Prognostic and diagnostic potential of the structural neuroanatomy of depression. PloS One, 4, e6353.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Criminisi, A., Shotton, J., Konukoglu, E., (2011). Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Microsoft Research Cambridge, Tech. Rep. MSRTR-2011-114 5, 12.Google Scholar
  11. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehericy, S., Habert, M.-O., Chupin, M., Benali, H., & Colliot, O. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage, 56, 766–781.PubMedCrossRefGoogle Scholar
  12. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9, 179–194.PubMedCrossRefGoogle Scholar
  13. Davatzikos, C., Resnick, S. M., Wu, X., Parmpi, P., & Clark, C. (2008). Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. NeuroImage, 41, 1220–1227.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Davatzikos, C., Xu, F., An, Y., Fan, Y., & Resnick, S. M. (2009). Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain, 132, 2026–2035.PubMedCentralPubMedCrossRefGoogle Scholar
  15. DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 837–845.Google Scholar
  16. Duchesnay, E., Cachia, A., Roche, A., Rivière, D., Cointepas, Y., Papadopoulos-Orfanos, D., Zilbovicius, M., Martinot, J.-L., & Mangin, J. F. (2007). Classification based on cortical folding patterns. Medical Imaging, IEEE Transactions, 26(4), 553–565.Google Scholar
  17. Duchesne, S., Rolland, Y., & Verin, M. (2009). Automated computer differential classification in Parkinsonian syndromes via pattern analysis on MRI. Academic Radiology, 16, 61–70.PubMedCrossRefGoogle Scholar
  18. Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A., Daly, E. M., Brammer, M. J., Murphy, C., & Murphy, D. G. (2010). Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. NeuroImage, 49, 44–56.PubMedCrossRefGoogle Scholar
  19. Fan, Y., Shen, D., Gur, R. C., Gur, R. E., & Davatzikos, C. (2007). COMPARE: classification of morphological patterns using adaptive regional elements. Medical Imaging, IEEE Transactions, 26, 93–105.CrossRefGoogle Scholar
  20. Feinstein, A., Roy, P., Lobaugh, N., Feinstein, K., O’Connor, P., & Black, S. (2004). Structural brain abnormalities in multiple sclerosis patients with major depression. Neurology, 62(4), 586–590.Google Scholar
  21. Fischl, B. (2012). Free surfer. NeuroImage, 62, 774–781.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Fischl, B., Sereno, M. I., & Dale, A. M. (1999a). Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195–207.PubMedCrossRefGoogle Scholar
  23. Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8, 272–284.PubMedCrossRefGoogle Scholar
  24. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., & Klaveness, S. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.PubMedCrossRefGoogle Scholar
  25. Fischl, B., van Der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., Busa, E., Seidman, L. J., Goldstein, J., Kennedy, D. & Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.Google Scholar
  26. Frisoni, G. B., Fox, N. C., Jack, C. R., Scheltens, P., & Thompson, P. M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6, 67–77.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. Ä., Frith, C. D., & Frackowiak, R. S. (1994). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2, 189–210.CrossRefGoogle Scholar
  28. Friston, K., Chu, C., Mourao-Miranda, J., Hulme, O., Rees, G., Penny, W., & Ashburner, J. (2008). Bayesian decoding of brain images. NeuroImage, 39, 181–205.PubMedCrossRefGoogle Scholar
  29. Gaonkar, B., & Davatzikos, C. (2013). Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification. NeuroImage, 78, 270–283.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Gollub, R.L., Shoemaker, J.M., King, M.D., White, T., Ehrlich, S., Sponheim, S.R., Clark, V.P., Turner, J.A., Mueller, B.A., Magnotta, V. (2013). The MCIC Collection: A Shared Repository of Multi-Modal, Multi-Site Brain Image Data from a Clinical Investigation of Schizophrenia. Neuroinformatics, 1–22.Google Scholar
  31. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal of Machine Learning Research, 3, 1157–1182.Google Scholar
  32. Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., Busa, E., Pacheco, J., Albert, M., & Killiany, R. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. NeuroImage, 32, 180–194.PubMedCrossRefGoogle Scholar
  33. Ho, B.-C., Andreasen, N. C., Nopoulos, P., Arndt, S., Magnotta, V., & Flaum, M. (2003). Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Archives of General Psychiatry, 60, 585.PubMedCrossRefGoogle Scholar
  34. Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., Whitwell, J. L., & Ward, C. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27, 685–691.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Jain, A., & Zongker, D. (1997). Feature selection: evaluation, application, and small sample performance. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19, 153–158.CrossRefGoogle Scholar
  36. Japkowicz, N., Shah, M. (2011). Evaluating learning algorithms: a classification perspective. Cambridge University Press.Google Scholar
  37. Kawasaki, Y., Suzuki, M., Kherif, F., Takahashi, T., Zhou, S.-Y., Nakamura, K., Matsui, M., Sumiyoshi, T., Seto, H., & Kurachi, M. (2007). Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. NeuroImage, 34, 235–242.PubMedCrossRefGoogle Scholar
  38. Kloppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., Fox, N. C., Jack, C. R., Ashburner, J., & Frackowiak, R. S. (2008). Automatic classification of MR scans in Alzheimer’s disease. Brain, 131, 681–689.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Kloppel, S., Chu, C., Tan, G., Draganski, B., Johnson, H., Paulsen, J., Kienzle, W., Tabrizi, S., Ashburner, J., & Frackowiak, R. (2009). Automatic detection of preclinical neurodegeneration Presymptomatic Huntington disease. Neurology, 72, 426–431.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Kloppel, S., Abdulkadir, A., Jack, C. R., Jr., Koutsouleris, N., Mour√£o-Miranda, J., & Vemuri, P. (2012). Diagnostic neuroimaging across diseases. NeuroImage, 61, 457–463.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Konukoglu, E., Glocker, B., Zikic, D., & Criminisi, A., (2013). Neighbourhood Approximation using randomized forests. Medical Image Analysis 17(7), 790–804.Google Scholar
  42. Koutsouleris, N., Meisenzahl, E. M., Davatzikos, C., Bottlender, R., Frodl, T., Scheuerecker, J., Schmitt, G., Zetzsche, T., Decker, P., & Reiser, M. (2009). Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Archives of General Psychiatry, 66, 700.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America, 103, 3863–3868.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S. M., & Davatzikos, C. (2004). Morphological classification of brains via high-dimensional shape transformations and machine learning methods. NeuroImage, 21, 46–57.PubMedCrossRefGoogle Scholar
  45. Lerch, J. P., Pruessner, J., Zijdenbos, A. P., Collins, D. L., Teipel, S. J., Hampel, H., & Evans, A. C. (2008). Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls. Neurobiology of Aging, 29, 23–30.PubMedCrossRefGoogle Scholar
  46. Liu, F., Guo, W., Yu, D., Gao, Q., Gao, K., Xue, Z., Du, H., Zhang, J., Tan, C., & Liu, Z. (2012). Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PloS One, 7, e40968.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Lockhart, R., Taylor, J., Tibshirani, R.J., Tibshirani, R., 2012. A significance test for the lasso.Google Scholar
  48. MacKay, D. J. (1992). The evidence framework applied to classification networks. Neural Computation, 4, 720–736.CrossRefGoogle Scholar
  49. Marcus, D. S., Olsen, T. R., Ramaratnam, M., & Buckner, R. L. (2007a). The extensible neuroimaging archive toolkit. Neuroinformatics, 5, 11–33.PubMedGoogle Scholar
  50. Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2007b). Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 19, 1498–1507.PubMedCrossRefGoogle Scholar
  51. Meinshausen, N., & Buhlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 72, 417–473.CrossRefGoogle Scholar
  52. Milham, M. P., Fair, D., Mennes, M., & Mostofsky, S. H. (2012). The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Frontiers in Systems Neuroscience, 6, 62.Google Scholar
  53. Mitchell, T. M., Hutchinson, R., Niculescu, R. S., Pereira, F., Wang, X., Just, M., & Newman, S. (2004). Learning to decode cognitive states from brain images. Machine Learning, 57, 145–175.CrossRefGoogle Scholar
  54. Mourao-Miranda, J., Bokde, A. L., Born, C., Hampel, H., & Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage, 28, 980–995.PubMedCrossRefGoogle Scholar
  55. Mourao-Miranda, J., Reinders, A., Rocha-Rego, V., Lappin, J., Rondina, J., Morgan, C., Morgan, K., Fearon, P., Jones, P., & Doody, G. (2012). Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. Psychological Medicine, 42, 1037.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Mwangi, B., Matthews, K., & Steele, J. D. (2012). Prediction of illness severity in patients with major depression using structural MR brain scans. Journal of Magnetic Resonance Imaging, 35, 64–71.PubMedCrossRefGoogle Scholar
  57. Nie, K., Chen, J.-H., Yu, H. J., Chu, Y., Nalcioglu, O., & Su, M.-Y. (2008). Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Academic Radiology, 15, 1513–1525.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Nielsen, J.A., Zielinski, B.A., Fletcher, P.T., Alexander, A.L., Lange, N., Bigler, E.D., Lainhart, J.E., Anderson, J.S., 2013. Multisite functional connectivity MRI classification of autism: ABIDE results. Frontiers in human neuroscience 7.Google Scholar
  59. Nieuwenhuis, M., van Haren, N. E., Hulshoff Pol, H. E., Cahn, W., Kahn, R. S., & Schnack, H. G. (2012). Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. NeuroImage, 61, 606–612.PubMedCrossRefGoogle Scholar
  60. Nouretdinov, I., Costafreda, S. G., Gammerman, A., Chervonenkis, A., Vovk, V., Vapnik, V., & Fu, C. H. (2011). Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. NeuroImage, 56, 809–813.PubMedCrossRefGoogle Scholar
  61. Parker, B. J., Günter, S., & Bedo, J. (2007). Stratification bias in low signal microarray studies. BMC Bioinformatics, 8(1), 326.Google Scholar
  62. Pereira, F., Botvinick, M., (2011). Classification of functional magnetic resonance imaging data using informative pattern features. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp. 940–946.Google Scholar
  63. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56, 303.PubMedCrossRefGoogle Scholar
  64. Plant, C., Teipel, S. J., Oswald, A., Böhm, C., Meindl, T., Mourao-Miranda, J., Bokde, A. W., Hampel, H., & Ewers, M. (2010). Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. NeuroImage, 50(1), 162–174.Google Scholar
  65. Rondina, J., Hahn, T., de Oliveira, L., Marquand, A., Dresler, T., Leitner, T., Fallgatter, A., Shawe-Taylor, J., Mourao-Miranda, J. (2013). SCoRS-a method based on stability for feature selection and mapping in neuroimaging.Google Scholar
  66. Sabuncu, M. R., Van Leemput, K. (2012). The Relevance Voxel Machine (RVoxM): A self-tuning bayesian model for informative image-based prediction. Medical Imaging, IEEE Transactions on Medical Imaging, 31(12), 2290–2306.Google Scholar
  67. Saeys, Y., Inza, I. a., & Larra√±aga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23, 2507–2517.PubMedCrossRefGoogle Scholar
  68. Schnack, H. G., Nieuwenhuis, M., van Haren, N. E., Abramovic, L., Scheewe, T. W., Brouwer, R. M., Hulshoff Pol, H. E., & Kahn, R. S. (2014). Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. NeuroImage, 84, 299–306.PubMedCrossRefGoogle Scholar
  69. Scholkopf, B., Smola, A.J. (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond. the MIT Press.Google Scholar
  70. Scott, A., Courtney, W., Wood, D., De la Garza, R., Lane, S., King, M., Wang, R., Roberts, J., Turner, J.A., Calhoun, V.D., 2011. COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Frontiers in neuroinformatics 5.Google Scholar
  71. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62, 42–52.PubMedCentralPubMedCrossRefGoogle Scholar
  72. Sonnenburg, S., Zien, A., Philips, P., & Rätsch, G. (2008). POIMs: positional oligomer importance matrices—understanding support vector machine-based signal detectors. Bioinformatics, 24(13), i6–i14.Google Scholar
  73. Soriano-Mas, C., Pujol, J., Alonso, P., Cardoner, N., Menchon, J. M., Harrison, B. J., Deus, J., Vallejo, J., & Gaser, C. (2007). Identifying patients with obsessive-compulsive disorder using whole-brain anatomy. NeuroImage, 35, 1028–1037.PubMedCrossRefGoogle Scholar
  74. Stonnington, C. M., Chu, C., Kl√∂ppel, S., Jack, C. R., Jr., Ashburner, J., & Frackowiak, R. S. (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage, 51, 1405–1413.PubMedCentralPubMedCrossRefGoogle Scholar
  75. Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. BMC Bioinformatics, 9, 307.PubMedCentralPubMedCrossRefGoogle Scholar
  76. Teipel, S. J., Born, C., Ewers, M., Bokde, A. L., Reiser, M. F., M√∂ller, H.-J. R., & Hampel, H. (2007). Multivariate deformation-based analysis of brain atrophy to predict Alzheimer’s disease in mild cognitive impairment. NeuroImage, 38, 13–24.PubMedCrossRefGoogle Scholar
  77. Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. The Journal of Machine Learning Research, 1, 211–244.Google Scholar
  78. Vemuri, P., Whitwell, J. L., Kantarci, K., Josephs, K. A., Parisi, J. E., Shiung, M. S., Knopman, D. S., Boeve, B. F., Petersen, R. C., & Dickson, D. W. (2008). Antemortem MRI based Structural abnormality iNDex (STAND)-scores correlate with postmortem braak neurofibrillary tangle stage. NeuroImage, 42, 559–567.PubMedCentralPubMedCrossRefGoogle Scholar
  79. Wang, X., Yang, J., Jensen, R., & Liu, X. (2006). Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma. Computer Methods and Programs in Biomedicine, 83, 147–156.PubMedCrossRefGoogle Scholar
  80. Wang, Y., Fan, Y., Bhatt, P., & Davatzikos, C. (2010). High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. NeuroImage, 50, 1519–1535.PubMedCentralPubMedCrossRefGoogle Scholar
  81. Wang, H., Nie, F., Huang, H., Risacher, S., Ding, C., Saykin, A.J., Shen, L. (2011). Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. Computer Vision (ICCV), 2011 I.E. International Conference on. IEEE, pp. 557–562.Google Scholar
  82. Westman, E., Simmons, A., Zhang, Y., Muehlboeck, J., Tunnard, C., Liu, Y., Collins, L., Evans, A., Mecocci, P., & Vellas, B. (2011). Multivariate analysis of MRI data for Alzheimer’s disease, mild cognitive impairment and healthy controls. NeuroImage, 54, 1178–1187.PubMedCrossRefGoogle Scholar
  83. Wilson, S. M., Ogar, J. M., Laluz, V., Growdon, M., Jang, J., Glenn, S., Miller, B. L., Weiner, M. W., & Gorno-Tempini, M. L. (2009). Automated MRI-based classification of primary progressive aphasia variants. NeuroImage, 47, 1558–1567.PubMedCentralPubMedCrossRefGoogle Scholar
  84. Wolfe, D.A., Hollander, M., 1973. Nonparametric statistical methods. Nonparametric statistical methods.Google Scholar
  85. Zien, A., Krämer, N., Sonnenburg, S.r., Rätsch, G. (2009). The feature importance ranking measure. In Machine Learning and Knowledge Discovery in Databases (pp. 694–709). Springer Berlin Heidelberg.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mert R. Sabuncu
    • 1
    • 2
  • Ender Konukoglu
    • 1
  • for the Alzheimer’s Disease Neuroimaging Initiative
  1. 1.Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUSA
  2. 2.Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations