, Volume 12, Issue 4, pp 619–622 | Cite as

An Efficient and Extendable Python Library to Analyze Neuronal Morphologies

  • Benjamin Torben-Nielsen
News Item


  1. Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies. Journal of Neuroscience, 27(35), 9247–9251.PubMedCrossRefGoogle Scholar
  2. Cannon, R. C., Turner, D. A., Pyapali, G. K., & Wheal, H. V. (1998). An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84(1–2), 49–54.PubMedCrossRefGoogle Scholar
  3. Cuntz, H., Forstner, F., Borst, A., & Häusser, M. (2010). One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Computational Biology, 6(8), e1000877.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Glaser, J. R., & Glaser, E. M. (1990). Neuron imaging with neurolucida—a PC-based system for image combining microscopy. Computerized Medical Imaging and Graphics, 14(5), 307–317.PubMedCrossRefGoogle Scholar
  5. Kaufmann, W. E., & Moser, H. W. (2000). Dendritic anomalies in disorders associated with mental retardation. Cerebral Cortex, 10(10), 981–991.PubMedCrossRefGoogle Scholar
  6. Peters, A., & Payne, B. R. (1993). Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cerebral Cortex, 3(1), 69–78.PubMedCrossRefGoogle Scholar
  7. Scorcioni, R., Polavaram, S., & Ascoli, G. A. (2008). L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 3(5), 866–876.PubMedCrossRefGoogle Scholar
  8. Soltesz, I. (2005). Diversity in the neuronal machine: Order and variability in interneuronal microcircuits. New-York: Oxford University Press.Google Scholar
  9. Torben-Nielsen, B., & Stiefel, K. M. (2010). An inverse approach for elucidating dendritic function. Frontiers in Computational Neuroscience, 4, 128.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Van Pelt, J., Uylings, H. B., Verwer, R. W., Pentney, R. J., & Woldenberg, M. J. (1992). Tree asymmetry—a sensitive and practical measure for binary topological trees. Bulletin of Mathematical Biology, 54(5), 759–784.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Computational Neuroscience UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan

Personalised recommendations