SPIN: A Method of Skeleton-Based Polarity Identification for Neurons

Abstract

Directional signal transmission is essential for neural circuit function and thus for connectomic analysis. The directions of signal flow can be obtained by experimentally identifying neuronal polarity (axons or dendrites). However, the experimental techniques are not applicable to existing neuronal databases in which polarity information is not available. To address the issue, we proposed SPIN: a method of Skeleton-based Polarity Identification for Neurons. SPIN was designed to work with large-scale neuronal databases in which tracing-line data are available. In SPIN, a classifier is first trained by neurons with known polarity in two steps: 1) identifying morphological features that most correlate with the polarity and 2) constructing a linear classifier by determining a discriminant axis (a specific combination of the features) and decision boundaries. Each polarity-undefined neuron is then divided into several morphological substructures (domains) and the corresponding polarities are determined using the classifier. Finally, the result is evaluated and warnings for potential errors are returned. We tested this method on fruitfly (Drosophila melanogaster) and blowfly (Calliphora vicina and Calliphora erythrocephala) unipolar neurons using data obtained from the Flycircuit and Neuromorpho databases, respectively. On average, the polarity of 84–92 % of the terminal points in each neuron could be correctly identified. An ideal performance with an accuracy between 93 and 98 % can be achieved if we fed SPIN with relatively “clean” data without artificial branches. Our result demonstrates that SPIN, as a computer-based semi-automatic method, provides quick and accurate polarity identification and is particularly suitable for analyzing large-scale data. We implemented SPIN in Matlab and released the codes under the GPLv3 license.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Alivisatos, A. P., Chun, M., Church, G. M., Greenspan, R. J., Roukes, M. L., & Yuste, R. (2012). The brain activity map project and the challenge of functional connectomics. Neuron, 74(6), 970–974. doi:10.1016/j.neuron.2012.06.006.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  2. Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies. The Journal of Neuroscience, 27(35), 9247–9251. doi:10.1523/JNEUROSCI.2055-07.2007.

    CAS  PubMed  Article  Google Scholar 

  3. Bas, E., & Erdogmus, D. (2011). Principal curves as skeletons of tubular objects: locally characterizing the structures of axons. Neuroinformatics, 9(2–3), 181–191. doi:10.1007/s12021-011-9105-2.

    PubMed  Article  Google Scholar 

  4. Billeci, L., Magliaro, C., & Ahluwalia, A. (2013). NEuronMOrphological analysis tool: open-source software for quantitative morphometrics. Frontiers in Neuroinformatics, 7, 2. doi:10.3389/fninf.2013.00002.

    PubMed Central  PubMed  Article  Google Scholar 

  5. Borst, A., & Haag, J. (1996). The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties. Journal of Computational Neuroscience, 3(4), 313–336. doi:10.1007/BF00161091.

    CAS  PubMed  Article  Google Scholar 

  6. Brown, K. M., Barrionuevo, G., Canty, A. J., Paola, V., Hirsch, J. A., Jefferis, G. S. X. E., et al. (2011). The DIADEM data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions. Neuroinformatics, 9(2–3), 143–157. doi:10.1007/s12021-010-9095-5.

    PubMed  Article  Google Scholar 

  7. Campagne, M. V. L., Oestreicher, A. B., Henegouwen, P. M. P. V. B. E., & Gispen, W. H. (1990). Ultrastructural double localization of B-50/GAP43 and synaptophysin (p38) in the neonatal and adult rat hippocampus. Journal of Neurocytology, 19(6), 948–961. doi:10.1007/BF01186822.

    Article  Google Scholar 

  8. Cannon, R., Turner, D., Pyapali, G., & Wheal, H. (1998). An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84(1–2), 49–54. doi:10.1016/S0165-0270(98)00091-0.

    CAS  PubMed  Article  Google Scholar 

  9. Chiang, A.-S., Lin, C.-Y., Chang, H.-M., Hsieh, C.-H., Yeh, C.-W., & Hwang, J.-K. (2011). Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Current Biology, 21(1), 1–11. doi:10.1016/j.cub.2010.11.056.

    CAS  PubMed  Article  Google Scholar 

  10. Chothani, P., Mehta, V., & Stepanyants, A. (2011). Automated tracing of neurites from light microscopy stacks of images. Neuroinformatics, 9(2–3), 263–278. doi:10.1007/s12021-011-9121-2.

    PubMed Central  PubMed  Article  Google Scholar 

  11. Chou, Y.-H., Spletter, M. L., Yaksi, E., Leong, J. C. S., Wilson, R. I., & Luo, L. (2010). Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nature Neuroscience, 13(4), 439–449. doi:10.1038/nn.2489.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. Craig, A. M., & Banker, G. (1994). Neuronal polarity. Annual Review of Neuroscience, 17(1), 267–310. doi:10.1146/annurev.ne.17.030194.001411.

    CAS  PubMed  Article  Google Scholar 

  13. Cuntz, H., Forstner, F., Haag, J., & Borst, A. (2008). The morphological identity of insect dendrites. PLoS Computational Biology, 4(12), e1000251. doi:10.1371/journal.pcbi.1000251.

    PubMed Central  PubMed  Article  Google Scholar 

  14. Cuntz, H., Forstner, F., Borst, A., & Häusser, M. (2010). One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Computational Biology, 6(8), e1000877. doi:10.1371/journal.pcbi.1000877.

    PubMed Central  PubMed  Article  Google Scholar 

  15. Donohue, D. E., & Ascoli, G. A. (2011). Automated reconstruction of neuronal morphology: an overview. Brain Research Reviews, 67(1–2), 94–102. doi:10.1016/j.brainresrev.2010.11.003.

    PubMed Central  PubMed  Article  Google Scholar 

  16. Duchene, J., & Leclercq, S. (1988). An optimal transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6), 978–983. doi:10.1109/34.9121.

    Article  Google Scholar 

  17. Feinberg, E. H., VanHoven, M. K., Bendesky, A., Wang, G., Fetter, R. D., Shen, K., et al. (2008). GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron, 57(3), 353–363. doi:10.1016/j.neuron.2007.11.030.

    CAS  PubMed  Article  Google Scholar 

  18. Fischbach, P. K.-F., & Dittrich, A. P. M. (1989). The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell and Tissue Research, 258(3), 441–475. doi:10.1007/BF00218858.

    Article  Google Scholar 

  19. Gillette, T. A., Brown, K. M., & Ascoli, G. A. (2011). The DIADEM metric: comparing multiple reconstructions of the same neuron. Neuroinformatics, 9(2–3), 233–245. doi:10.1007/s12021-011-9117-y.

    PubMed  Article  Google Scholar 

  20. Glaser, J. R., & Glaser, E. M. (1990). Neuron imaging with Neurolucida–a PC-based system for image combining microscopy. Computerized Medical Imaging and Graphics: the Official Journal of the Computerized Medical Imaging Society, 14(5), 307–317.

    CAS  Article  Google Scholar 

  21. Gordon, M. D., & Scott, K. (2009). Motor control in a Drosophila taste circuit. Neuron, 61(3), 373–384. doi:10.1016/j.neuron.2008.12.033.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Hanesch, U., Fischbach, K.-F., & Heisenberg, M. (1989). Neuronal architecture of the central complex in Drosophila melanogaster. Cell and Tissue Research, 257(2), 343–366. doi:10.1007/BF00261838.

    Article  Google Scholar 

  23. Heinze, S., & Homberg, U. (2008). Neuroarchitecture of the central complex of the desert locust: intrinsic and columnar neurons. The Journal of Comparative Neurology, 511(4), 454–478. doi:10.1002/cne.21842.

    PubMed  Article  Google Scholar 

  24. Ikeno, H., Kanzaki, R., Aonuma, H., Takahata, M., Mizunami, M., Yasuyama, K., et al. (2008). Development of invertebrate brain platform: Management of research resources for invertebrate neuroscience and neuroethology. In M. Ishikawa, K. Doya, H. Miyamoto, & T. Yamakawa (Eds.), Neural information processing (pp. 905–914). Springer: Berlin. Retrieved from http://link.springer.com/chapter/10.1007/978-3-540-69162-4_94.

    Google Scholar 

  25. Ito, M., Masuda, N., Shinomiya, K., Endo, K., & Ito, K. (2013). Systematic analysis of neural projections reveals clonal composition of the Drosophila brain. Current Biology, 23(8), 644–655. doi:10.1016/j.cub.2013.03.015.

    CAS  PubMed  Article  Google Scholar 

  26. Jang, J.-S. R. (2012). Machine Learning Toolbox. http://mirlab.org/jang/matlab/toolbox/machineLearning. Accessed 12 June 2012.

  27. Lee, P.-C., Chuang, C.-C., Chiang, A.-S., & Ching, Y.-T. (2012). High-throughput computer method for 3D neuronal structure reconstruction from the image stack of the Drosophila brain and its applications. PLoS Computational Biology, 8(9), e1002658. doi:10.1371/journal.pcbi.1002658.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  28. Lin, C.-Y., Chuang, C.-C., Hua, T.-E., Chen, C.-C., Dickson, B. J., Greenspan, R. J., et al. (2013a). A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. Cell Reports, 3(5), 1739–1753. doi:10.1016/j.celrep.2013.04.022.

    CAS  PubMed  Article  Google Scholar 

  29. Lin, H.-H., Chu, L.-A., Fu, T.-F., Dickson, B. J., & Chiang, A.-S. (2013b). Parallel neural pathways mediate CO2 avoidance responses in Drosophila. Science, 340(6138), 1338–1341. doi:10.1126/science.1236693.

    CAS  PubMed  Article  Google Scholar 

  30. Luczak, A. (2010). Measuring neuronal branching patterns using model-based approach. Frontiers in Computational Neuroscience, 4, 10. doi:10.3389/fncom.2010.00135.

    Google Scholar 

  31. Matus, A., Bernhardt, R., & Hugh-Jones, T. (1981). High molecular weight microtubule-associated proteins are preferentially associated with dendritic microtubules in brain. Proceedings of the National Academy of Sciences of the United States of America, 78(5), 3010–3014.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Müller, M., Homberg, U., & Kühn, A. (1997). Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca gregaria). Cell and Tissue Research, 288(1), 159–176.

    PubMed  Article  Google Scholar 

  33. Parekh, R., & Ascoli, G. A. (2013). Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron, 77(6), 1017–1038. doi:10.1016/j.neuron.2013.03.008.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. Pastrana, E. (2013). Focus on mapping the brain. Nature Methods, 10(6), 481. doi:10.1038/nmeth.2509.

    CAS  PubMed  Article  Google Scholar 

  35. Peng, H., Ruan, Z., Long, F., Simpson, J. H., & Myers, E. W. (2010). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28(4), 348–353. doi:10.1038/nbt.1612.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. Robinson, I. M., Ranjan, R., & Schwarz, T. L. (2002). Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain. Nature, 418(6895), 336–340. doi:10.1038/nature00915.

    CAS  PubMed  Article  Google Scholar 

  37. Rolls, M. M. (2011). Neuronal polarity in Drosophila: sorting out axons and dendrites. Developmental Neurobiology, 71(6), 419–429. doi:10.1002/dneu.20836.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  38. Rolls, M. M., Satoh, D., Clyne, P. J., Henner, A. L., Uemura, T., & Doe, C. Q. (2007). Polarity and intracellular compartmentalization of Drosophila neurons. Neural Development, 2(1), 7. doi:10.1186/1749-8104-2-7.

    PubMed Central  PubMed  Article  Google Scholar 

  39. Scorcioni, R., Polavaram, S., & Ascoli, G. A. (2008). L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 3(5), 866–876. doi:10.1038/nprot.2008.51.

    CAS  PubMed  Article  Google Scholar 

  40. Squire, L. R., Berg, D., Bloom, F., Lac, S. du, & Ghosh, A. (2008). Subcellular organization of the nervous system: organelles and their functions. In Fundamental Neuroscience (3rd ed., pp. 59–86). Amsterdam; Boston: Elsevier/Academic Press.

  41. Strausfeld, N. J., & Hausen, K. (1977). The resolution of neuronal assemblies after cobalt injection into neuropil. Proceedings of the Royal Society of London. Series B: Biological Sciences, 199(1136), 463–476. doi:10.1098/rspb.1977.0154.

    Article  Google Scholar 

  42. Takemura, S., Bharioke, A., Lu, Z., Nern, A., Vitaladevuni, S., Rivlin, P. K., et al. (2013). A visual motion detection circuit suggested by Drosophila connectomics. Nature, 500(7461), 175–181. doi:10.1038/nature12450.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. Türetken, E., González, G., Blum, C., & Fua, P. (2011). Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. Neuroinformatics, 9(2–3), 279–302. doi:10.1007/s12021-011-9122-1.

    PubMed  Article  Google Scholar 

  44. Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H., & Chklovskii, D. B. (2011). Structural properties of the Caenorhabditis elegans neuronal network. PLoS Computational Biology, 7(2), e1001066. doi:10.1371/journal.pcbi.1001066.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  45. Wang, T., & Liao, D. (2011). Neuronal morphology classification based on SVM. In Computer Science and Service System (CSSS), 2011 International Conference on (pp. 3344–3347). doi:10.1109/CSSS.2011.5972187.

  46. Wang, Y., Narayanaswamy, A., Tsai, C.-L., & Roysam, B. (2011b). A broadly applicable 3-D neuron tracing method based on open-curve snake. Neuroinformatics, 9(2–3), 193–217. doi:10.1007/s12021-011-9110-5.

    PubMed  Article  Google Scholar 

  47. Wang, J., Ma, X., Yang, J. S., Zheng, X., Zugates, C. T., Lee, C.-H. J., et al. (2004). Transmembrane/juxtamembrane domain-dependent dscam distribution and function during mushroom body neuronal morphogenesis. Neuron, 43(5), 663–672. doi:10.1016/j.neuron.2004.06.033.

    CAS  PubMed  Article  Google Scholar 

  48. White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London B. Biological Sciences, 314(1165), 1–340. doi:10.1098/rstb.1986.0056.

    CAS  Article  Google Scholar 

  49. Whitney, A. W. (1971). A direct method of nonparametric measurement selection. IEEE Transactions on Computers, C-20(9), 1100–1103. doi:10.1109/T-C.1971.223410.

    Article  Google Scholar 

  50. Wichterle, H., Gifford, D., & Mazzoni, E. (2013). Mapping neuronal diversity one cell at a time. Science, 341(6147), 726–727. doi:10.1126/science.1235884.

    CAS  PubMed  Article  Google Scholar 

  51. Xiao, H., & Peng, H. (2013). APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics (Oxford, England), 29(11), 1448–1454. doi:10.1093/bioinformatics/btt170.

    CAS  Article  Google Scholar 

  52. Yu, H.-H., Awasaki, T., Schroeder, M. D., Long, F., Yang, J. S., He, Y., et al. (2013). Clonal development and organization of the adult Drosophila central brain. Current Biology, 23(8), 633–643. doi:10.1016/j.cub.2013.02.057.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  53. Zhao, T., Xie, J., Amat, F., Clack, N., Ahammad, P., Peng, H., et al. (2011). Automated reconstruction of neuronal morphology based on local geometrical and global structural models. Neuroinformatics, 9(2–3), 247–261. doi:10.1007/s12021-011-9120-3.

    PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Council grants #NSC 101-2311-B-007-008-MY3 and Free Excellent Projects, and by the Aim for the Top University Project of the Ministry of Education, Taiwan. We thank the National Center for High-performance Computing for providing the Flycircuit data; Drs. Ann-Shyn Chiang and Hsiu-Ming Chang for helpful discussion. We also thank Dr. Chih-Yung Lin for providing PB data.

Conflict of Interest

The authors declare that they have no conflict of interests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chung-Chuan Lo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.08 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, YH., Lin, YN., Chuang, CC. et al. SPIN: A Method of Skeleton-Based Polarity Identification for Neurons. Neuroinform 12, 487–507 (2014). https://doi.org/10.1007/s12021-014-9225-6

Download citation

Keywords

  • Neuronal polarity
  • Dendrite
  • Axon
  • Drosophila
  • Automated neural reconstruction
  • Connectome