Skip to main content

Advertisement

Log in

A Full-Brain, Bootstrapped Analysis of Diffusion Tensor Imaging Robustly Differentiates Parkinson Disease from Healthy Controls

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

There is a compelling need for early, accurate diagnosis of Parkinson’s disease (PD). Various magnetic resonance imaging modalities are being explored as an adjunct to diagnosis. A significant challenge in using MR imaging for diagnosis is developing appropriate algorithms for extracting diagnostically relevant information from brain images. In previous work, we have demonstrated that individual subject variability can have a substantial effect on identifying and determining the borders of regions of analysis, and that this variability may impact on prediction accuracy. In this paper we evaluate a new statistical algorithm to determine if we can improve accuracy of prediction using a subjects left-out validation of a DTI analysis. Twenty subjects with PD and 22 healthy controls were imaged to evaluate if a full brain diffusion tensor imaging-fractional anisotropy (DTI-FA) map might be capable of segregating PD from controls. In this paper, we present a new statistical algorithm based on bootstrapping. We compare the capacity of this algorithm to classify the identity of subjects left out of the analysis with the accuracy of other statistical techniques, including standard cluster-thresholding. The bootstrapped analysis approach was able to correctly discriminate the 20 subjects with PD from the 22 healthy controls (area under the receiver operator curve or AUROC 0.90); however the sensitivity and specificity of standard cluster-thresholding techniques at various voxel-specific thresholds were less effective (AUROC 0.72–0.75). Based on these results sufficient information to generate diagnostically relevant statistical maps may already be collected by current MRI scanners. We present one statistical technique that might be used to extract diagnostically relevant information from a full brain analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bennet, C. M., Wolford, G. L., & Miller, M. B. (2009). The principled control of false positives in neuroimaging. Social Cognitive and Affective Neuroscience, 4(4), 417–422.

    Article  Google Scholar 

  • Brodoehl, S., Klingner, C., Volk, G. F., Bitter, T., Witte, O. W., & Redecker, C. (2012). Decreased olfactory bulb volume in idiopathic Parkinson’s disease detected by 3.0-Tesla magnetic resonance imaging. Movement Disorders, 27(8), 1019–1025.

    Article  PubMed  Google Scholar 

  • Caprihan, A., Pearlson, G. D., & Calhoun, V. D. (2008). Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements. NeuroImage, 42(2), 675–682.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.

    Article  CAS  PubMed  Google Scholar 

  • DiCiccio, T. J., & Romano, J. P. (1989). A review of bootstrap confidence intervals. Journal of the Royal Statistical Society, Series B, 50, 338–354.

    Google Scholar 

  • Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7, 1–26.

    Article  Google Scholar 

  • Eidelberg, D. (2009). Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends in Neurosciences, 32(10), 548–557.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Focke, N. K., Helms, G., Scheewe, S., Pantel, P. M., Bachmann, C. G., Dechent, P., et al. (2011). Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson syndrome and healthy controls. Human Brain Mapping, 32(11), 1905–1915.

    Article  PubMed  Google Scholar 

  • Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magnetic Resonance in Medicine, 33(5), 636–647.

    Article  CAS  PubMed  Google Scholar 

  • Gallivan, J. P., McLean, D. A., Flanagan, J. R., & Culham, J. C. (2013). Where one hand meets the other: limb-specific and action-dependent movement plans decoded from preparatory signals in single human frontoparietal brain areas. The Journal of Neuroscience, 30(5), 1991–2008. 33.

    Article  Google Scholar 

  • Gorell, J. M., Ordidge, R. J., Brown, G. G., Deniau, J. C., & Buderer, N. M. (1995). Helpern. Increased iron‐related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology, 459(6), 1138–1143.

    Article  Google Scholar 

  • Habeck, C., Foster, N. L., Perneczky, R., Kurz, A., Alexopoulos, P., Koeppe, R. A., et al. (2008). Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease. NeuroImage, 40, 1503–1515.

    Article  PubMed Central  PubMed  Google Scholar 

  • Haller, S., Badoud, S., Nguyen, D., Barnaure, I., Montandon, M. L., Lovblad, K. O., et al. (2012). Differentiation between Parkinson disease and other forms of Parkinsonism using support vector machine analysis of susceptibility-weighted imaging (SWI): Initial results. European Radiology http://us.datscan.com/patient/support-resources/locate-datscan-imaging-center.

  • Huang, C., Mattis, P., Tang, C., Perine, K., Carbon, M., & Eidelberg, D. (2007). Metabolic brain networks associated with cognitive function in Parkinson’s disease. NeuroImage, 34(2), 714–723.

    Article  PubMed  Google Scholar 

  • Huang, C., Mattis, P., Perine, K., Brown, N., Dhawan, V., & Eidelberg, D. (2008). Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology, 70(16 pt 2), 1470–1477.

    Article  CAS  PubMed  Google Scholar 

  • Junger, J., Pauly, K., Brohr, S., Birkholz, P., Neuschaefer-Rue, C., Kohler, C., et al. (2013). Sex matters: neural correlates of voice gender perception. NeuroImage, 79, 275–287.

    Article  PubMed  Google Scholar 

  • Lauzon, et al. (2013). Simultaneous analysis and quality assurance for diffusion tensor imaging. PLOS One, 8(4), e61737.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leunissen, I., Coxon, J. P., Geurts, M., Caeyenberghs, K., Michiels, K., Sunaert, S., et al. (2013). Disturbed cortic-subcortical interactions during motor task switching in traumatic brain injury. Human Brain Mapping, 34, 1254–1271.

    Article  PubMed  Google Scholar 

  • Ma, Y., Huang, C., Dyke, J. P., Pan, H., Alsop, D., Feigin, A., et al. (2010). Parkinson’s disease spatial covariance pattern: noninvasive quantification with perfusion MRI. Journal of Cerebral Blood Flow and Metabolism, 30(3), 505–509.

    Article  PubMed Central  PubMed  Google Scholar 

  • Melzer, et al. (2013). White matter microstructure deteriorates across cognitive stages in Parkinson disease. Neurology, 80, 1841.

    Article  CAS  PubMed  Google Scholar 

  • Monti, M. M., Pickard, J. D., & Owen, A. M. (2013). Visual cognition in disorders of consciousness: from VI to top-down attention. Human Brain Mapping, 34, 1245–1253.

    Article  PubMed  Google Scholar 

  • Mure, H., Hirano, S., Tang, C. C., Isaias, I. U., Antonini, A., Ma, Y., et al. (2011). Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. NeuroImage, 54, 1244–1253.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nichols, T., & Hayasaka, S. (2003). Controlling the family wise error rate in functional neuroimaging: a comparative review. Statistical Methods in Medical Research, 12(5), 419–446.

    Article  PubMed  Google Scholar 

  • Péran, P., Cherubini, A., Assogna, F., Piras, F., Quattrocchi, C., Peppe, A., et al. (2010). Magnetic resonance imaging markers of Parkinson’s disease nigrostriatal signature. Brain, 33(11), 3423–3433.

    Article  Google Scholar 

  • Shalom Michaeli, S., Oz, G., Sorce, D. J., Garwood, M., Ugurbil, K., Majestic, S., et al. (2007). Assessment of brain iron and neuronal integrity in patients with Parkinson’s disease using novel MRI contrasts. Movement Disorders, 22(3), 334–340.

    Article  PubMed  Google Scholar 

  • Skidmore, F. M., Yang, M., Baxter, L., von Deneen, K. D., Collingwood, J., He, G., et al. (2011a). Reliability analysis of the resting state can sensitively and specifically identify the presence of Parkinson disease. NeuroImage, 75, 249–261.

    Article  PubMed  Google Scholar 

  • Skidmore, F. M., Spetsieris, P., Yang, M., Gold, M., Heilman, K. M., Collingwood, J., et al. (2011b). Diagnosis of Parkinson’s disease using resting state fMRI. Poster LB22, Movement Disorders, Toronto, June 2011.

  • Skidmore, F. M., Yang, M., Baxter, L., von Deneen, K., Collingwood, J., He, G., et al. (2011c). Apathy, depression, and motor symptoms have distinct and separable resting activity patterns in idiopathic Parkinson disease. NeuroImage, 81, 484–495.

    Article  PubMed  Google Scholar 

  • Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44(1), 83–98.

    Article  PubMed  Google Scholar 

  • Tang, C. C., Poston, K. L., Dhawan, V., & Eidelberg, D. (2010a). Abnormalities in metabolic network activity precede the onset of motor symptoms in Parkinson’s disease. Journal of Neuroscience, 30(3), 1049–1056.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang, C. C.*., Poston, K. L.*., Eckveer, T., Feigin, A., Frucht, S., Gudesblatt, M., et al. (2010b). Differential diagnosis of Parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurology, 9, 149–158. * Equal first author contribution.

    Article  Google Scholar 

  • Theilmann, et al. (2013). White-matter changes correlate with cognitive functioning in Parkinson’s disease. Frontiers in Neurology, 4, 37.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vaillancourt, D. E., Spraker, M. B. BS, Prodoehl, J., Abraham, I., Corcos, D. M., Zhou, X. J., et al. (2009). High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology, 72(16), 1378–1384.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Villalon, D., et al. (2013). White matter microstructural abnormalities in girls with chromosome 22q11.2 deletion syndrome. NeuroImage. doi:10.1016/j.neuroimage.2013.04.028.

    PubMed Central  Google Scholar 

  • Zhan, W., Kang, G. A., Glass, G. A., Zhang, Y., Shirley, C., Millin, R., et al. (2012). Regional alterations of brain microstructure in Parkinson’s disease using diffusion tensor imaging. Movement Disorders, 27(1), 90–97.

    Article  PubMed  Google Scholar 

  • Zhang, K., Yua, C., Zhang, Y., Wu, X., Zhuc, C., Chan, P., et al. (2011). Regional alterations of brain microstructure in Parkinson’s disease using diffusion tensor imaging. European Journal of Radiology, 77, 269–273.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by the nonprofit fund Hawg Wild for the Cure with special thanks to Capital City Harley Davidson and Gainesville Harley Davidson, as well as by the National Center for Advancing Translational Sciences of the National Institutes of Health under award number UL1TR00165. Additional funding for this project came from the Micanopy Doc Hollywood Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Skidmore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skidmore, F.M., Spetsieris, P.G., Anthony, T. et al. A Full-Brain, Bootstrapped Analysis of Diffusion Tensor Imaging Robustly Differentiates Parkinson Disease from Healthy Controls. Neuroinform 13, 7–18 (2015). https://doi.org/10.1007/s12021-014-9222-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-014-9222-9

Keywords

Navigation