Skip to main content
Log in

The Filament Editor: An Interactive Software Environment for Visualization, Proof-Editing and Analysis of 3D Neuron Morphology

  • Software Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Neuroanatomical analysis, such as classification of cell types, depends on reliable reconstruction of large numbers of complete 3D dendrite and axon morphologies. At present, the majority of neuron reconstructions are obtained from preparations in a single tissue slice in vitro, thus suffering from cut off dendrites and, more dramatically, cut off axons. In general, axons can innervate volumes of several cubic millimeters and may reach path lengths of tens of centimeters. Thus, their complete reconstruction requires in vivo labeling, histological sectioning and imaging of large fields of view. Unfortunately, anisotropic background conditions across such large tissue volumes, as well as faintly labeled thin neurites, result in incomplete or erroneous automated tracings and even lead experts to make annotation errors during manual reconstructions. Consequently, tracing reliability renders the major bottleneck for reconstructing complete 3D neuron morphologies. Here, we present a novel set of tools, integrated into a software environment named ‘Filament Editor’, for creating reliable neuron tracings from sparsely labeled in vivo datasets. The Filament Editor allows for simultaneous visualization of complex neuronal tracings and image data in a 3D viewer, proof-editing of neuronal tracings, alignment and interconnection across sections, and morphometric analysis in relation to 3D anatomical reference structures. We illustrate the functionality of the Filament Editor on the example of in vivo labeled axons and demonstrate that for the exemplary dataset the final tracing results after proof-editing are independent of the expertise of the human operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ascoli, G. A. (2006). Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nature Reviews Neuroscience, 7(4), 318–324.

    Article  CAS  PubMed  Google Scholar 

  • Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho. Org: a central resource for neuronal morphologies. J Neurosci, 27(35), 9247–9251. doi:10.1523/JNEUROSCI.2055-07.2007.

    Article  CAS  PubMed  Google Scholar 

  • Binzegger, T., Douglas, R. J., & Martin, K. A. (2004). A quantitative map of the circuit of cat primary visual cortex. Journal of Neuroscience, 24(39), 8441–8453.

    Article  CAS  PubMed  Google Scholar 

  • Broser, P. J., Schulte, R., Lang, S., Roth, A., Helmchen, F., Waters, J., et al. (2004). Nonlinear anisotropic diffusion filtering of three-dimensional image data from two-photon microscopy. Journal of Biomedical Optics, 9(6), 1253–1264. doi:10.1117/1.1806832.

    Article  PubMed  Google Scholar 

  • Broser, P. J., Grinevich, V., Osten, P., Sakmann, B., & Wallace, D. J. (2008). Critical period plasticity of axonal arbors of layer 2/3 pyramidal neurons in rat somatosensory cortex: layer-specific reduction of projections into deprived cortical columns. Cerebral Cortex, 18(7), 1588–1603.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cannon, R. C., Turner, D. A., Pyapali, G. K., & Wheal, H. V. (1998). An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84(1–2), 49–54.

    Article  CAS  PubMed  Google Scholar 

  • Carnevale, N. T., & Hines, M. L. (2006). The NEURON Book: University Press.

  • Crook, S., Gleeson, P., Howell, F., Svitak, J., & Silver, R. A. (2007). MorphML: level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics, 5(2), 96–104.

    Article  PubMed  Google Scholar 

  • Dercksen, V. J., Weber, B., Guenther, D., Oberlaender, M., Prohaska, S., & Hege, H. C. (2009). Automatic alignment of stacks of filament data. IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro (ISBI), 971–974.

  • Dodt, H. U., Leischner, U., Schierloh, A., Jahrling, N., Mauch, C. P., Deininger, K., et al. (2007). Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nature Methods, 4(4), 331–336. doi:10.1038/nmeth1036.

    Article  CAS  PubMed  Google Scholar 

  • Donohue, D. E., & Ascoli, G. A. (2011). Automated reconstruction of neuronal morphology: an overview. Brain Research Reviews, 67(1–2), 94–102. doi:10.1016/j.brainresrev.2010.11.003.

    Article  PubMed Central  PubMed  Google Scholar 

  • Erturk, A., Mauch, C. P., Hellal, F., Forstner, F., Keck, T., Becker, K., et al. (2012). Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nature Medicine, 18(1), 166–171. doi:10.1038/nm.2600.

    Article  Google Scholar 

  • FEI-VisualizationSciencesGroup (2013a). Amira 5.5. www.vsg3d.com/amira/overview

  • FEI-VisualizationSciencesGroup (2013b). Amira 5.5 Reference Guide. www.vsg3d.com/sites/default/files/Amira_Reference_Guide.pdf

  • Feldmeyer, D., & Sakmann, B. (2000). Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex. Journal of Physiology, 525(Pt 1), 31–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frick, A., Feldmeyer, D., Helmstaedter, M., & Sakmann, B. (2007). Monosynaptic Connections between Pairs of L5A Pyramidal Neurons in Columns of Juvenile Rat Somatosensory Cortex. Cereb Cortex 18(2), 397-406.

    Google Scholar 

  • Fuchs, H., Kedem, Z. M., & Uselton, S. P. (1977). Optimal Surface Reconstruction from Planar Contours (Vol. 20, Communications of the ACM, 20(10), 693-702).

  • Gillette, T. A., Brown, K. M., & Ascoli, G. A. (2011). The DIADEM metric: comparing multiple reconstructions of the same neuron. Neuroinformatics, 9(2–3), 233–245. doi:10.1007/s12021-011-9117-y.

    Article  PubMed  Google Scholar 

  • Groh, A., Meyer, H. S., Schmidt, E. F., Heintz, N., Sakmann, B., & Krieger, P. (2010). Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cerebral Cortex, 20(4), 826–836.

    Article  PubMed  Google Scholar 

  • Halavi, M., Hamilton, K. A., Parekh, R., & Ascoli, G. A. (2012). Digital reconstructions of neuronal morphology: three decades of research trends. Frontiers in Neuroscience, 6, 49. doi:10.3389/fnins.2012.00049.

    Article  PubMed Central  PubMed  Google Scholar 

  • Helmstaedter, M., Briggman, K. L., & Denk, W. (2011). High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nature Neuroscience, 14(8), 1081–1088. doi:10.1038/nn.2868.

    Article  CAS  PubMed  Google Scholar 

  • Hill, S. L., Wang, Y., Riachi, I., Schurmann, F., & Markram, H. (2012). Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits. Proceedings of the National Academy of Sciences of the United States of America, 109(42), E2885–E2894. doi:10.1073/pnas.1202128109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horikawa, K., & Armstrong, W. E. (1988). A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. Journal of Neuroscience Methods, 25(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Jungblut, D., Vlachos, A., Schuldt, G., Zahn, N., Deller, T., & Wittum, G. (2012). SpineLab: tool for three-dimensional reconstruction of neuronal cell morphology. Journal of Biomedical Optics, 17(7), 076007. doi:10.1117/1.JBO.17.7.076007.

    Article  PubMed  Google Scholar 

  • Kleinfeld, D., Bharioke, A., Blinder, P., Bock, D. D., Briggman, K. L., Chklovskii, D. B., et al. (2011). Large-scale automated histology in the pursuit of connectomes. Journal of Neuroscience, 31(45), 16125–16138. doi:10.1523/JNEUROSCI.4077-11.2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lang, S., Dercksen, V. J., Sakmann, B., & Oberlaender, M. (2011). Simulation of signal flow in 3D reconstructions of an anatomically realistic neural network in rat vibrissal cortex. Neural Networks, 24(9), 998–1011. doi:10.1016/j.neunet.2011.06.013.

    Article  PubMed  Google Scholar 

  • Liang, Y. D., Barsky, B. A., & M., S. (1992). Some Improvements to a Parametric Line Clipping Algorithm. Tech. Rep. UCB/CSD-92-688. EECS Department, University of California, Berkley.

  • Luisi, J., Narayanaswamy, A., Galbreath, Z., & Roysam, B. (2011). The FARSIGHT trace editor: an open source tool for 3-D inspection and efficient pattern analysis aided editing of automated neuronal reconstructions. Neuroinformatics, 9(2–3), 305–315. doi:10.1007/s12021-011-9115-0.

    Article  PubMed  Google Scholar 

  • Margrie, T. W., Brecht, M., & Sakmann, B. (2002). In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflügers Archiv - European Journal of Physiology, 444(4), 491–498.

    Article  CAS  PubMed  Google Scholar 

  • Markram, H. (2006). The blue brain project. Nature Reviews Neuroscience, 7(2), 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Mayerich, D., Bjornsson, C., Taylor, J., & Roysam, B. (2011). Metrics for Comparing Explicit Representations of Interconnected Biological Networks. In IEEE Symposium on Biological Data Visualization, Providence RI, (pp. 79–86).

  • McGuffin, M. J., & Jurisica, I. (2009). Interaction techniques for selecting and manipulating subgraphs in network visualizations. In IEEE Transactions on Visualization and Computer Graphics, 15(6), 937–944.

    Article  Google Scholar 

  • Meijering, E. (2010). Neuron tracing in perspective. Cytometry. Part A, 77(7), 693–704. doi:10.1002/cyto.a.20895.

    Article  Google Scholar 

  • Meyer, H. S., Wimmer, V. C., Hemberger, M., Bruno, R. M., de Kock, C. P., Frick, A., et al. (2010). Cell type-specific thalamic innervation in a column of rat vibrissal cortex. Cerebral Cortex, 20(10), 2287–2303.

    Article  PubMed Central  PubMed  Google Scholar 

  • Myatt, D. R., Hadlington, T., Ascoli, G. A., & Nasuto, S. J. (2012). Neuromantic - from semi-manual to semi-automatic reconstruction of neuron morphology. Frontiers in Neuroinformatics, 6, 4. doi:10.3389/fninf.2012.00004.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nielsen, J., & Mack, R. L. (1994). Usability Inspection Methods: John Wiley & Sons, Inc.

  • Oberlaender, M., Bruno, R. M., Sakmann, B., & Broser, P. J. (2007). Transmitted light brightfield mosaic microscopy for three-dimensional tracing of single neuron morphology. Journal of Biomedical Optics, 12(6), 064029. doi:10.1117/1.2815693.

    Article  PubMed  Google Scholar 

  • Oberlaender, M., Broser, P. J., Sakmann, B., & Hippler, S. (2009). Shack-Hartmann wave front measurements in cortical tissue for deconvolution of large three-dimensional mosaic transmitted light brightfield micrographs. Journal of Microscopy, 233(2), 275–289.

    Article  CAS  PubMed  Google Scholar 

  • Oberlaender, M., Boudewijns, Z. S., Kleele, T., Mansvelder, H. D., Sakmann, B., & de Kock, C. P. (2011). Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4188–4193. doi:10.1073/pnas.1100647108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oberlaender, M., de Kock, C. P. J., Bruno, R. M., Ramirez, A., Meyer, H. S., Dercksen, V. J., et al. (2012a). Cell Type-Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex. Cerebral Cortex, 22(10), 2375-2391 (New York, NY : 1991), doi:10.1093/cercor/bhr317.

  • Oberlaender, M., Ramirez, A., & Bruno, R. M. (2012b). Sensory experience restructures thalamocortical axons during adulthood. Neuron, 74(4), 648–655. doi:10.1016/j.neuron.2012.03.022.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parekh, R., & Ascoli, G. A. (2013). Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron, 77(6), 1017–1038. doi:10.1016/j.neuron.2013.03.008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng, H., Ruan, Z., Long, F., Simpson, J. H., & Myers, E. W. (2010). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28(4), 348–353. doi:10.1038/nbt.1612.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng, H., Long, F., Zhao, T., & Myers, E. (2011). Proof-editing is the bottleneck of 3D neuron reconstruction: the problem and solutions. Neuroinformatics, 9(2–3), 103–105. doi:10.1007/s12021-010-9090-x.

    Article  PubMed  Google Scholar 

  • Pinault, D. (1996). A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. Journal of Neuroscience Methods, 65(2), 113–136.

    Article  CAS  PubMed  Google Scholar 

  • Ragan, T., Kadiri, L. R., Venkataraju, K. U., Bahlmann, K., Sutin, J., Taranda, J., et al. (2012). Serial two-photon tomography for automated ex vivo mouse brain imaging. Nature Methods, 9(3), 255–258. doi:10.1038/nmeth.1854.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schubert, D., Kotter, R., Luhmann, H. J., & Staiger, J. F. (2006). Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. Cerebral Cortex, 16(2), 223–236.

    Article  CAS  PubMed  Google Scholar 

  • Sigg, C., Weyerich, T., Botsch, M., & Gross, M. GPU-Based Ray-Casting of Quadratic Surfaces. In 3rd Eurographics/IEEE VGTC conference on Point-Based Graphics, Boston MA, 2006 (pp. 59–65).

  • Skiena, S. (1998). The algorithm design manual: Springer Verlag New York.

  • Svoboda, K. (2011). The past, present, and future of single neuron reconstruction. Neuroinformatics, 9(2-3), 97-99. doi:10.1007/s12021-011-9097-y.

    PubMed  Google Scholar 

  • Szeliski, R. (2006). Image alignment and stitching: a tutorial. Foundations and Trends in Computer Graphics and Vision, 2(1), 1–104.

    Article  Google Scholar 

  • Wearne, S. L., Rodriguez, A., Ehlenberger, D. B., Rocher, A. B., Henderson, S. C., & Hof, P. R. (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136(3), 661–680. doi:10.1016/j.neuroscience.2005.05.053.

    Article  CAS  PubMed  Google Scholar 

  • Wills, G. J. (1996). Selection: 524,288 ways to say “this is interesting”. In IEEE Symposium on Information Visualization, (pp. 54–60)

  • Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research, 171(1), 11–28.

    Article  CAS  PubMed  Google Scholar 

  • Zitova, B., & Flusser, J. (2003). Image registration methods: a survey. Image and Vision Computing, 21(11), 977–1000. doi:10.1016/S0262-8856(03)00137-9.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Bert Sakmann and Philip J. Broser for advice and assistance during early stages of the project; Wolfgang Holler and Britta Weber for their contribution to the Filament Editor; Marianne Krabi and Jonas Hörsch for assisting with the analysis functionality; Norbert Lindow for providing the LineRayCaster. Randy M. Bruno and Christiaan P.J. de Kock for supplying biocytin-labeled neurons; Lothar Baltruschat, Richard Smith, Kevin Pels, and Ariel Lee for proof-editing; Hans-Joachim Wagner and the entire staff of the Anatomy Institute of the University of Tuebingen for their generous support. Funding was provided by the Bernstein Center for Computational Neuroscience, Tuebingen (funded by the German Federal Ministry of Education and Research (BMBF; FKZ: 01GQ1002)) (MO), by the Max Planck Institute for Biological Cybernetics, Tuebingen (MO), by the Max Planck Florida Institute for Neuroscience, Jupiter (MO), by the Werner Reichardt Center for Integrative Neuroscience, Tuebingen (MO), by the Zuse Institute Berlin (VJD, HCH) and the Max Planck Institute of Neurobiology, Martinsried (VJD). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions

Conceived and designed the project: MO. Developed the Filament Editor and associated functionalities: VJD. Analyzed the data and wrote the paper: VJD, HCH, MO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Oberlaender.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dercksen, V.J., Hege, HC. & Oberlaender, M. The Filament Editor: An Interactive Software Environment for Visualization, Proof-Editing and Analysis of 3D Neuron Morphology. Neuroinform 12, 325–339 (2014). https://doi.org/10.1007/s12021-013-9213-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-013-9213-2

Keywords

Navigation