Abstract
Machine learning techniques are increasingly being used in making relevant predictions and inferences on individual subjects neuroimaging scan data. Previous studies have mostly focused on categorical discrimination of patients and matched healthy controls and more recently, on prediction of individual continuous variables such as clinical scores or age. However, these studies are greatly hampered by the large number of predictor variables (voxels) and low observations (subjects) also known as the curse-of-dimensionality or small-n-large-p problem. As a result, feature reduction techniques such as feature subset selection and dimensionality reduction are used to remove redundant predictor variables and experimental noise, a process which mitigates the curse-of-dimensionality and small-n-large-p effects. Feature reduction is an essential step before training a machine learning model to avoid overfitting and therefore improving model prediction accuracy and generalization ability. In this review, we discuss feature reduction techniques used with machine learning in neuroimaging studies.
Similar content being viewed by others
References
Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., Havlicek, M., Rachakonda, S., Fries, J., Kalyanam, R., Michael, A. M., Caprihan, A., Turner, J. A., Eichele, T., Adelsheim, S., Bryan, A. D., Bustillo, J., Clark, V. P., Ewing, S. W. F., Filbey, F., Ford, C. C., Hutchison, K., Jung, R. E., Kiehl, K. A., Kodituwakku, P., Komesu, Y. M., Mayer, A. R., Pearlson, G. D., Phillips, J. R., Sadek, J. R., Michael, S., Teuscher, U., Thoma, R. J., & Calhoun, V. D. (2011). A baseline for the multivariate comparison of resting-state networks. Frontiers in systems neuroscience, 5, 2.
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38, 95–113.
Ashburner, J. (2009). Computational anatomy with the SPM software. Magnetic Resonance Imaging, 27, 1163–1174.
Ashburner, J., & Friston, K. (2000). Voxel-based morphometry-the methods. NeuroImage, 11, 805–821.
Balci, S., Sabuncu, M., Yoo, J., Gosh, S., Gabrieli, W., Gabrieli, J., & Golland, P. (2008). Prediction of successful memory encoding from fMRI data. Med Image Comput Comput Assist Interv, 11, 97–104.
Bellman, R. (1961). Adaptive control process: A guided tour:, Princenton University.
Birn, R. M., Murphy, K., & Bandettini, P. A. (2008). The effect of respiration variations on independent component analysis results of resting state functional connectivity. Human Brain Mapping, 29, 740–750.
Bishop, C. (1995). Neural networks for pattern recognition. New York: Oxford University Press.
Bishop, C. (2006). Pattern recongition and machine learning. New York: Springer.
Bonnici, H. M., Kumaran, D., Chadwick, M. J., Weiskopf, N., Hassabis, D., & Maguire, E. A. (2011). Decoding representations of scenes in the medial temporal lobes. Hippocampus, 22, 1143–1153.
Brammer, M. (2009). The role of neuroimaging in diagnosis and personalized medicine–current position and likely future directions. Dialogues In Clinical Neuroscience, 11, 389–396.
Bray, S., Chang, C., & Hoeft, F. (2009). Applications of multivariate pattern classification analyses in developmental neuroimaging of healthy and clinical populations. Frontiers In Human Neuroscience, 3, 32.
Brown, T. T., Kuperman, J. M., Chung, Y., Erhart, M., McCabe, C., Hagler, D. J., Venkatraman, V. K., Akshoomoff, N., Amaral, D. G., and Bloss, C. S. (2012). Neuroanatomical assessment of biological maturity. Current Biology, 22(18), 1693–1698.
Bunea, F., She, Y., Ombao, H., Gongvatana, A., Devlin, K., & Cohen, R. (2011). Penalized least squares regression methods and applications to neuroimaging. NeuroImage, 55, 1519–1527.
Calderoni, S., Retico, A., Biagi, L., Tancredi, R., Muratori, F., & Tosetti, M. (2012). Female children with autism spectrum disorder: An insight from mass-univariate and pattern classification analyses. NeuroImage, 59, 1013–1022.
Calhoun, V. D. (2011). Group ICA Of fMRI Toolbox(GIFT) (http://mialab.mrn.org/software/gift/), pp. http://mialab.mrn.org/software/gift/.
Calhoun, V. D., & Adali, T. L. (2006). Unmixing fMRI with independent component analysis. IEEE Engineering In Medicine And Biology Magazine: The Quarterly Magazine Of The Engineering In Medicine & Biology Society, 25, 79–90.
Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14, 140–151.
Calhoun, V. D., Liu, J., & Adali, T. L. (2009). A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage, 45, S163–S172.
Calhoun, V. D., Sui, J., Kiehl, K., Turner, J., Allen, E., & Pearlson, G. (2011). Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder. Frontiers in Psychiatry, 2, 75.
Caprihan, A., Pearlson, G. D., & Calhoun, V. D. (2008). Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements. NeuroImage, 42, 675–682.
Carroll, M. K., Cecchi, G. A., Rish, I., Garg, R., & Rao, A. R. (2009). Prediction and interpretation of distributed neural activity with sparse models. NeuroImage, 44, 112–122.
Casanova, R., Whitlow, C. T., Wagner, B., Williamson, J., Shumaker, S. A., Maldjian, J. A., and Espeland, M. A. (2011). High dimensional classification of structural MRI Alzheimer's disease data based on large scale regularization. Frontiers in Neuroinformatics, 5. doi:10.3389/fninf.2011.0002.
Casanova, R., Whitlow, C., Wagner, B., Espeland, M., & Maldjian, J. (2012). Combining graph and machine learning methods to analyze differences in functional connectivity across sex. The Open Neuroimaging Journal, 6, 1.
Castro, E., Martanez-Ramon, M., Pearlson, G., Sui, J., & Calhoun, V. D. (2011a). Characterization of groups using composite kernels and multi-source fMRI analysis data: Application to schizophrenia. NeuroImage, 58, 526–536.
Castro, E., Martinez-Raman, M., Pearlson, G., Sui, J., & Calhoun, V. D. (2011b). Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia. NeuroImage, 58, 526–536.
Chadwick, M. J., Hassabis, D., Weiskopf, N., & Maguire, E. A. (2010). Decoding individual episodic memory traces in the human hippocampus. Current Biology, 20, 544–547.
Chai, J.-W., Chi-Chang Chen, C., Chiang, C.-M., Ho, Y.-J., Chen, H.-M., Ouyang, Y.-C., Yang, C.-W., Lee, S.-K., & Chang, C.-I. (2010). Quantitative analysis in clinical applications of brain MRI using independent component analysis coupled with support vector machine. Journal Of Magnetic Resonance Imaging: JMRI, 32, 24–34.
Chaves, R., Ramarez, J., Garriz, J. M., Lopez, M., Salas-Gonzalez, D., Alvarez, I., & Segovia, F. (2009). SVM-based computer-aided diagnosis of the Alzheimer's disease using t-test NMSE feature selection with feature correlation weighting. Neuroscience Letters, 461, 293–297.
Chen, K., Reiman, E. M., Huan, Z., Caselli, R. J., Bandy, D., Ayutyanont, N., & Alexander, G. E. (2009). Linking functional and structural brain images with multivariate network analyses: A novel application of the partial least square method. NeuroImage, 47, 602–610.
Cheng, W., Ji, X., Zhang, J., & Feng, J. (2012). Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques. Frontiers In Systems Neuroscience, 6.
Chu, C., Hsu, A.-L., Chou, K.-H., Bandettini, P., & Lin, C. (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60, 59–70.
Cohen, J. (1998). Statistical power analysis for the behavioural sciences- 2nd edition. New Jersey: Lawrence Erbaum Associates.
Correa, N., AdalÄ, T., & Calhoun, V. D. (2007). Performance of blind source separation algorithms for fMRI analysis using a group ICA method. Magnetic Resonance Imaging, 25, 684–694.
Costafreda, S. G., Chu, C., Ashburner, J., & Fu, C. H. Y. (2009). Prognostic and diagnostic potential of the structural neuroanatomy of depression. Plos One, 4, e6353.
Costafreda, S., Fu, C., Picchioni, M., Toulopoulou, T., McDonald, C., Kravariti, E., Walsge, M., Prata, D., Murray, R., & McGuire, P. (2011). Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder. BMC Psychiatry, 11, 18.
Coutanche, M. N., Thompson-Schill, S. L., & Schultz, R. T. (2011). Multi-voxel pattern analysis of fMRI data predicts clinical symptom severity. NeuroImage, 57, 113–123.
Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) "brain reading"•: detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19, 261–270.
Craddock, R. C., Holtzheimer, P. E., 3rd, Hu, X. P., & Mayberg, H. S. (2009). Disease state prediction from resting state functional connectivity. Magnetic Resonance In Medicine: Official Journal Of The Society Of Magnetic Resonance In Medicine/Society Of Magnetic Resonance In Medicine, 62, 1619–1628.
Dai, Z., Yan, C., Wang, Z., Wang, J., Xia, M., Li, K., & He, Y. (2012). Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). NeuroImage, 59, 2187–2195.
Davatzikos, C., Fan, Y., Wu, X., Shen, D., & Resnick, S. M. (2008). Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging. Neurobiology of Aging, 29, 514–523.
De Martino, F., Gentile, F., Esposito, F., Balsi, M., Di Salle, F., Goebel, R., & Formisano, E. (2007). Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers. NeuroImage, 34, 177–194.
De Martino, F., Valente, G., Staeren, N. L., Ashburner, J., Goebel, R., & Formisano, E. (2008). Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage, 43, 44–58.
Deshpande, G., Li, Z., Santhanam, P., Coles, C. D., Lynch, M. E., Hamann, S., & Hu, X. (2010). Recursive cluster elimination based support vector machine for disease state prediction using resting state functional and effective brain connectivity. Plos One, 5, e14277.
Dosenbach, N. U. F., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., Nelson, S. M., Wig, G. S., Vogel, A. C., Lessov-Schlaggar, C. N., et al. (2010). Prediction of individual brain maturity using fMRI. Science, 329, 1358–1361.
Douglas, P. K., Harris, S., Yuille, A., & Cohen, M. S. (2011). Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief. NeuroImage, 56, 544–553.
Doyle, O. M., Ashburner, J., Zelaya, F. O., Williams, S. C. R., Mehta, M. A., & Marquand, A. F. (2013). Multivariate decoding of brain images using ordinal regression. NeuroImage, 81, 347–357.
Duchesnay, E., Roche, A., Riviere, D., Papadopoulos, D., Cointepas, Y., and Mangin, J.-F. (2004). Population classification based on structural morphometry of cortical sulci. Paper presented at: Biomedical Imaging: Nano to Macro, 2004.
Duchesnay, E., Cachia, A., Roche, A., Riviere, D., Cointepas, Y., Papadopoulos-Orfanos, D., Zilbovicius, M., Martinot, J.-L., Regis, J., & Mangin, J.-F. (2007). Classification based on cortical folding patterns. Medical Imaging, IEEE Transactions, 26, 553–565.
Duchesnay, E., Cachia, A., Boddaert, N., Chabane, N., Mangin, J.-F., Martinot, J.-L., Brunelle, F., & Zilbovicius, M. (2011). Feature selection and classification of imbalanced datasets: Application to PET images of children with autistic spectrum disorders. NeuroImage, 57, 1003–1014.
Duff, E. P., Trachtenberg, A. J., Mackay, C. E., Howard, M. A., Wilson, F., Smith, S. M., and Woolrich, M. W. (2011). Task-driven ICA feature generation for accurate and interpretable prediction using fMRI. NeuroImage, 6(1), 189–203.
Dukart, J., Mueller, K., Barthel, H., Villringer, A., Sabri, O., and Schroeter, M. L. (2012). Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI. Psychiatry Research: Neuroimaging, 212(3), 230–236.
Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A., Daly, E. M., Brammer, M. J., Murphy, C., & Murphy, D. G. (2010). Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. NeuroImage, 49, 44–56.
Eickhoff, S., Laird, A., Grefkes, C., Wang, L., Zilles, K., & Fox, P. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30, 2907–2926.
Erhardt, E. B., Rachakonda, S., Bedrick, E. J., Allen, E. A., Adali, T., & Calhoun, V. D. (2011). Comparison of multi-subject ICA methods for analysis of fMRI data. Human Brain Mapping, 32, 2075–2095.
Fan, Y., Shen, D., Gur, R. C., Gur, R. E., & Davatzikos, C. (2006). COMPARE: Classification of Morphological Patterns Using Adaptive Regional Elements. Medical Imaging, IEEE Transactions, 26, 93–105.
Fan, Y., Rao, H., Hurt, H., Giannetta, J., Korczykowski, M., Shera, D., Avants, B., & Gee, J. (2007). Multivariate examination of brain abnormality using both structural and functional MRI. NeuroImage, 36, 1189–1199.
Fan, Y., Kaufer, D., and Shen, D. (2010). Joint estimation of multiple clinical variables of neurological diseases from imaging patterns. Paper presented at: Biomedical Imaging: From Nano to Macro, 2010 I.E. International Symposium on (IEEE).
Formisano, E., De Martino, F., & Valente, G. (2008). Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning. Magnetic Resonance Imaging, 26, 921–934.
Fort, G., & Lambert-Lacroix, S. (2005). Classification using partial least squares with penalized logistic regression. Bioinformatics, 21, 1104–1111.
Franke, K., Ziegler, G., Kloppel, S., & Gaser, C. (2010). Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. NeuroImage, 50, 883–892.
Franke, K., Luders, E., May, A., Wilke, M., & Gaser, C. (2012). Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI. NeuroImage, 63, 1305–1312.
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33, 1.
Friston, K. J., Poline, J. B., Holmes, A. P., Frith, C. D., & Frakowiack, R. S. (1996). A multivariate analysis of PET activation studies. Human Brain Mapping, 4, 140–151.
Fu, C. H. Y., Mourao-Miranda, J., Costafreda, S. G., Khanna, A., Marquand, A. F., Williams, S. C. R., & Brammer, M. J. (2008). Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biological Psychiatry, 63, 656–662.
Gothelf, D., Hoeft, F., Ueno, T., Sugiura, L., Lee, A. D., Thompson, P., & Reiss, A. L. (2011). Developmental changes in multivariate neuroanatomical patterns that predict risk for psychosis in 22q11.2 deletion syndrome. Journal Of Psychiatric Research, 45, 322–331.
Grana, M., Termenon, M., Savio, A., Gonzalez-Pinto, A., Echeveste, J., Perez, J. M., & Besga, A. (2011). Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by pearson's correlation. Neuroscience Letters, 502, 225–229.
Greenberg, A. S., Esterman, M., Wilson, D., Serences, J. T., & Yantis, S. (2010). Control of spatial and feature-based attention in frontoparietal cortex. The Journal of Neuroscience, 30, 14330–14339.
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning, 7(8), 1157–1182.
Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2001). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389–422.
Haller, S., Bartsch, A., Nguyen, D., Rodriguez, C., Emch, J., Gold, G., Lovblad, K. O., & Giannakopoulos, P. (2010a). Cerebral microhemorrhage and iron deposition in mild cognitive impairment: susceptibility-weighted MR imaging assessment. Radiology, 257, 764–773.
Haller, S., Nguyen, D., Rodriguez, C., Emch, J., Gold, G., Bartsch, A., Lovblad, K. O., & Giannakopoulos, P. (2010b). Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data. Journal of Alzheimer's disease, 22, 315–327.
Hansen, L. K., Larsen, J., Nielsen, F. Ã., Strother, S. C., Rostrup, E., Savoy, R., Lange, N., Sidtis, J., Svarer, C., & Paulson, O. B. (1999). Generalizable patterns in neuroimaging: How many principal components? NeuroImage, 9, 534–544.
Hanson, S. J., & Halchenko, Y. O. (2008). Brain reading using full brain support vector machines for object recognition: there is no "face" identification area. Neural Computation, 20, 486–503.
Haynes, J.-D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature Neuroscience, 8, 686–691.
He, W., Wang, Z., & Jiang, H. (2008). Model optimizing and feature selecting for support vector regression in time series forecasting. Neurocomputing Machine Learning for Signal Processing (MLSP 2006)/Life System Modelling, Simulation, and Bio-inspired Computing (LSMS 2007), 72, 600–611.
Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M. K., & Johnson, S. C. (2009). Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. NeuroImage, 48, 138–149.
Hoeft, F., Walter, E., Lightbody, A. A., Hazlett, H. C., Chang, C., Piven, J., & Reiss, A. L. (2011). Neuroanatomical differences in toddler boys with fragile x syndrome and idiopathic autism. Archives Of General Psychiatry, 68, 295–305.
Hua, T. W., & Dougherty, E. (2009). Performance of feature-selection methods in the classification of high-dimension data. Pattern Recognition, 42, 409–424.
Ince, N. F., Goksu, F., Pellizzer, G., Tewfik, A., and Stephane, M. (2008). Selection of spectro-temporal patterns in multichannel MEG with support vector machines for schizophrenia classification. Paper presented at: Engineering in Medicine and Biology Society, 2008.
Ingalhalikar, M., Parker, D., Bloy, L., Roberts, T. P. L., & Verma, R. (2011). Diffusion based abnormality markers of pathology: toward learned diagnostic prediction of ASD. NeuroImage, 57, 918–927.
Johansen-Berg, H., & Behrens, T. (2009). Diffusion MRI - from quantitative measurements to in-vivo neuroanatomy. London: UK, Academic Press.
Johnston, B., Mwangi, B., Matthews, K., Coghill, D., and Steele, J. (2012). Predictive classification of individual magnetic resonance imaging scans from children and adolescents. European Child & Adolescent Psychiatry (Springer Berlin/Heidelberg), pp. 1–12.
Joliffe, I. (2002). Principle component analysis. New York: Springer.
Kjems, U., Hansen, L. K., Anderson, J., Frutiger, S., Muley, S., Sidtis, J., Rottenberg, D., & Strother, S. (2002). The quantitative evaluation of functional neuroimaging experiments: Mutual information learning curves. NeuroImage, 15, 772–786.
Kloppel, S., Stonnington, C., Chu, C., Draganski, B., Scahill, R., Rohrer, J., Fox, N., Jack, C., Jr., Ashburner, J., & Frackowiak, R. (2008). Automatic classification of MR scans in Alzheimer's disease. Brain: A Journal of Neurology, 131, 681–689.
Kohannim, O., Hibar, D., Jahanshad, N., Stein, J., Hua, X., Toga, A., Jack, C., Weinen, M., and Thompson, P. (2012a). Predicting temporal lobe volume on MRI from genotypes using L1-L 2regularized regression. Paper presented at: Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on (IEEE).
Kohannim, O., Hibar, D. P., Stein, J. L., Jahanshad, N., Hua, X., Rajagopalan, P., Toga, A. W., Jack, C. R., Jr., Weiner, M. W., & de Zubicaray, G. I. (2012b). Discovery and replication of gene influences on brain structure using LASSO regression. Frontiers in Neuroscience, 6.
Kohavi, R., & John, G. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97, 1–2.
Koutsouleris, N., Meisenzahl, E. M., Davatzikos, C., Bottlender, R., Frodl, T., Scheuerecker, J., Schmitt, G., Zetzsche, T., Decker, P., Reiser, M., et al. (2009). Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Archives of General Psychiatry, 66, 700–712.
Kovalev, V. A., Petrou, M., & Suckling, J. (2003). Detection of structural differences between the brains of schizophrenic patients and controls. Psychiatry Research: Neuroimaging, 124, 177–189.
Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America, 103, 3863–3868.
Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F., & Baker, C. I. (2009). Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience, 12, 535–540.
Kriegeskorte, N., Lindquist, M. A., Nichols, T. E., Poldrack, R. A., & Vul, E. (2010). Everything you never wanted to know about circular analysis, but were afraid to ask. Journal of Cerebral Blood Flow & Metabolism, 30, 1551–1557.
Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review. NeuroImage, 56, 455–475.
Kwok, J. T. Y., & Tsang, I. W. H. (2004). The pre-image problem in kernel methods. Neural Networks, IEEE Transactions, 15, 1517–1525.
LaConte, S., Strother, S., Cherkassky, V., Anderson, J., & Hu, X. (2005). Support vector machines for temporal classification of block design fMRI data. NeuroImage, 26, 317.
Laird, A., Lancaster, J., & Fox, P. (2005a). BrainMap: the social evolution of a functional neuroimaging database. Neuroinformatics, 3, 65–78.
Laird, A. R., McMillan, K. M., Lancaster, J. L., Kochunov, P., Turkeltaub, P. E., Pardo, J. V., & Fox, P. T. (2005b). A comparison of label-based review and ALE meta-analysis in the Stroop task. Human Brain Mapping, 25, 6–21.
Langs, G., Menze, B. H., Lashkari, D., & Golland, P. (2011). Detecting stable distributed patterns of brain activation using Gini contrast. NeuroImage, 56, 497–507.
Lee, J., & Verleysen, M. (2007). Nonlinear Dimensionality Reduction. New York: USA, Springer Publishing Co.
Lim, L., Marquand, A., Cubillo, A. A., Smith, A. B., Chantiluke, K., Simmons, A., Mehta, M., & Rubia, K. (2013). Disorder-specific predictive classification of adolescents with Attention Deficit Hyperactivity Disorder (ADHD) relative to autism using structural magnetic resonance imaging. PLOS ONE, 8, e63660.
Linden, D. E. J. (2012). The challenges and promise of neuroimaging in psychiatry. Neuron, 73, 8–22.
Liu, M., Zhang, D., & Shen, D. (2012). Ensemble sparse classification of Alzheimer's disease. NeuroImage, 60, 1106–1116.
Lohmann, G., Volz, K. G., & Ullsperger, M. (2007). Using non-negative matrix factorization for single-trial analysis of fMRI data. NeuroImage, 37, 1148–1160.
Lopez, M., Ramirez, J., Garriz, J., Alvarez, I., Salas-Gonzalez, D., Segovia, F., Chaves, R., Padilla, P., & Gomez-Rao, M. (2011). Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer's disease. Neurocomputing, 74, 1260–1271.
MacIntosh, A. R., Bookstei, F., Haxby, J., & Grady, C. (1996). Spatial pattern analysis of functional brain images using partial least squares. NeuroImage, 3, 143–157.
Magnin, B., Mesrob, L., Kinkingnahun, S., Palagrini-Issac, M., Colliot, O., Sarazin, M., Dubois, B., Leharicy, S., & Benali, H. (2009). Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI. Neuroradiology, 51, 73–83.
Marquand, A., Howard, M., Brammer, M., Chu, C., Coen, S., & Mourao-Miranda, J. (2010a). Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. NeuroImage, 49, 2178–2189.
Marquand, A., Howard, M., Brammer, M., Chu, C., Coen, S., & Mourao-Miranda, J. (2010b). Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. NeuroImage, 49, 2178–2189.
Marquand, A. F., De Simoni, S., O'Daly, O. G., Williams, S. C. R., Mourao-Miranda, J., & Mehta, M. A. (2011). Pattern classification of working memory networks reveals differential effects of methylphenidate, atomoxetine, and placebo in healthy volunteers. Neuropsychopharmacology, 36, 1237–1247.
Marquand, A. F., O'Daly, O. G., De Simoni, S., Alsop, D. C., Maguire, R. P., Williams, S. C. R., Zelaya, F. O., & Mehta, M. A. (2012). Dissociable effects of methylphenidate, atomoxetine and placebo on regional cerebral blood flow in healthy volunteers at rest: A multi-class pattern recognition approach. NeuroImage, 60, 1015–1024.
Martinez-Montes, E., Valdes-Sosa, P. A., Miwakeichi, F., Goldman, R. I., & Cohen, M. S. (2004). EEG/fMRI analysis by multiway partial least squares. NeuroImage, 22, 1023–34.
McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares analysis of neuroimaging data: applications and advances. NeuroImage, 23, 250–263.
McIntosh, A. R., & Misic, B. (2013). Multivariate statistical analyses for neuroimaging data. Annual Review of Psychology, 64, 499–525.
Menzies, L., Achard, S., Chamberlain, S. R., Fineberg, N., Chen, C.-H., delCampo, N., Sahakian, B. J., Robbins, T. W., & Bullmore, E. (2007). Neurocognitive endophenotypes of obsessive-compulsive disorder. Brain, 130, 3223–3236.
Mesrob, L., Magnin, B., Colliot, O., Sarazin, M., Hahn-Barma, V., Dubois, B., Gallinari, P., Leharicy, S., Kinkingnhun, S., and Benali, H. (2008). Identification of Atrophy Patterns in Alzheimers Disease Based on SVM Feature Selection and Anatomical Parcellation. Medical Imaging and Augmented Reality, 5128, 124–132.
Misaki, M., Kim, Y., Bandettini, P. A., & Kriegeskorte, N. (2010). Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. NeuroImage, 53, 103–118.
Mitchell, T. M. (2011). From journal articles to computational models: a new automated tool. Nature methods, 8, 627.
Mitchell, T. M., Hutchinson, R., Niculescu, R. S., Pereira, F., Wang, X., Just, M., & Newman, S. (2004). Learning to decode cognitive states from brain images. Machine Learning, 57, 145–175.
Mourao-Miranda, J., Bokde, A. L. W., Born, C., Hampel, H., & Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data. NeuroImage, 28, 980–995.
Mourao-Miranda, J., Reynaud, E., McGlone, F., Calvert, G., & Brammer, M. (2006). The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data. NeuroImage, 33, 1055–1065.
Mourao-Miranda, J., Oliveira, L., Ladouceur, C. D., Marquand, A., Brammer, M., Birmaher, B., Axelson, D., & Phillips, M. L. (2012). Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents. Plos One, 7, e29482.
Mwangi, B., Ebmeier, K., Matthews, K., & Douglas Steele, J. (2012a). Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain: A Journal of Neurology, 135, 1508–1521.
Mwangi, B., Matthews, K., & Steele, J. (2012b). Prediction of illness severity in patients with major depression using structural MR brain scans. Journal of Magnetic Resonance Imaging, 35, 64–71.
Mwangi, B., Hasan, K. M., and Soares, J. C. (2013). Prediction of individual subject's age across the human lifespan using diffusion tensor imaging: A machine learning approach. NeuroImage, 75, 58–67.
Nester, P. G., O'Donnell, B. F., Mccarley, R. W., Niznikeiwicz, M., Barnard, J., Shen, Z. J., Bookstein, F. L., & Shenton, M. E. (2002). A new statistical method for testing hypotheses of neuropsychological/MRI relationships in schizophrenia: partial least squares analysis. Schizophrenia Research, 53, 57–66.
Nho, K., Shen, L., Kim, S., Risacher, S. L., West, J. D., Foroud, T., Jack, C. R., Weiner, M. W., & Saykin, A. J. (2010). Automatic prediction of conversion from mild cognitive impairment to probable alzheimer's disease using structural magnetic resonance imaging. AMIA Annual Symposium Proceedings/AMIA Symposium AMIA Symposium, 2010, 542–546.
Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10, 424–430.
Ogutu, J. O., Schulz-Streeck, T., and Piepho, H. P. (2012). Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. Paper presented at: BMC proceedings (Springer).
Orru, G., Pettersson-Yeo, W., Marquand, A. F., Sartori, G., & Mechelli, A. (2012). Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neuroscience And Biobehavioral Reviews, 36, 1140–1152.
Penny, W., Friston, K., Ashburner, J., and Nicols, T. (2007). Statistical parametric mapping: The Analysis of functional Brain images. London: Academic Press
Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: A tutorial overview. NeuroImage Mathematics in Brain Imaging, 45, S199–S209.
Radulescu, A. R., & Mujica-Parodi, L. R. (2009). A principal component network analysis of prefrontal-limbic functional magnetic resonance imaging time series in schizophrenia patients and healthy controls. Psychiatry Research, 174, 184–194.
Rao, A., Lee, Y., Gass, A., and Monsch, A. (2011). Classification of Alzheimer's Disease from structural MRI using sparse logistic regression with optional spatial regularization. Paper presented at: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (IEEE).
Rasmussen, C., and Williams, C. (2006). Gaussian Processes for Machine Learning MIT Press
Rasmussen, P. M., Madsen, K. H., Lund, T. E., & Hansen, L. K. (2011). Visualization of nonlinear kernel models in neuroimaging by sensitivity maps. NeuroImage, 55, 1120–1131.
Rasmussen, P. M., Abrahamsen, T. J., Madsen, K. H., & Hansen, L. K. (2012). Nonlinear denoising and analysis of neuroimages with kernel principal component analysis and pre-image estimation. NeuroImage, 60, 1807–1818.
Rish, I., Cecchi, G., Baliki, M., & Apkarian, A. (2010). Sparse regression models of pain perception. Brain Informatics, 212–223.
Rizk-Jackson, A., Stoffers, D., Sheldon, S., Kuperman, J., Dale, A., Goldstein, J., Corey-Bloom, J., Poldrack, R. A., & Aron, A. R. (2011). Evaluating imaging biomarkers for neurodegeneration in pre-symptomatic Huntington's disease using machine learning techniques. NeuroImage, 56, 788–796.
Ryali, S., Supekar, K., Abrams, D. A., & Menon, V. (2010). Sparse logistic regression for whole brain classification of fMRI data. NeuroImage, 51, 752.
Saeys, Y., Inza, I., and Larranaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507–2517.
Salimi-Khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D., & Nichols, T. E. (2009). Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. NeuroImage, 45, 810–823.
Sato, J. R., Hoexter, M. Q., Fujita, A., and Rohde, L. A. (2012). Evaluation of pattern recognition and feature extraction methods in ADHD prediction. Frontiers in Systems Neuroscience, 6(68). doi:10.3389/fnsys.2012.00068.
Scholkopf, B., & Smola, A. (2002). Learning with Kernels: Support vector machines, regularization, optimization, and beyond. Cambridge: MIT Press.
Schrouff, J., Rosa, M. J., Rondina, J., Marquand, A., Chu, C., Ashburner, J., Phillips, C., Richiardi, J., and Mourao-Miranda, J. (2013). PRoNTo: Pattern Recognition for Neuroimaging Toolbox. Neuroinformatics, 11(3), 319–339. doi:10.1007/s12021-013-9178-1.
Scott, D. (1992). Multivariate density estimation: Theory, practice and visualization. New York: Wiley.
Shen, L., Kim, S., Qi, Y., Inlow, M., Swaminathan, S., Nho, K., Wan, J., Risacher, S., Shaw, L., and Trojanowski, J. (2011). Identifying neuroimaging and proteomic biomarkers for MCI and AD via the elastic net. Multimodal Brain Image Analysis, 7012, 27–34.
Sheskin, D. (2004). Handbook of parametric and nonparametric statistical procedures. Florida: Chapman & Hall.
Shi, W., Lee, K. E., and Wahba, G. (2007). Detecting disease-causing genes by LASSO-Patternsearch algorithm. Paper presented at: BMC proceedings, (BioMed Central Ltd).
Sidhu, G. S., Asgarian, N., Greiner, R., & Brown, M. R. G. (2012). Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD. Frontiers in Systems Neuroscience, 6, 74.
Stone, J. (2004). Independent component analysis. Cambridge: MIT Press.
Stonnington, C. M., Chu, C., Kloppel, S., Jack, C. R., Jr., Ashburner, J., & Frackowiak, R. S. J. (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer's disease. NeuroImage, 51, 1405–1413.
Strother, S. C., Anderson, J., Hansen, L. K., Kjems, U., Kustra, R., Sidtis, J., Frutiger, S., Muley, S., LaConte, S., & Rottenberg, D. (2002). The quantitative evaluation of functional neuroimaging experiments: The NPAIRS data analysis framework. NeuroImage, 15, 747–771.
Sui, J., Adali, T., Yu, Q., Chen, J., & Calhoun, V. D. (2012). A review of multivariate methods for multimodal fusion of brain imaging data. Journal of Neuroscience Methods, 204, 68–81.
Tagliazucchi, E., von Wegner, F., Morzelewski, A., Borisov, S., Jahnke, K., and Laufs, H. (2012). Automatic sleep staging using fMRI functional connectivity data. Neuroimage, 63(1) 63–72.
Theodoridis, S., & Koutroumbas, K. (2009). Pattern Recognition (4th ed.). California: Elseiver.
Thirion, B., & Faugeras, O. (2003). Dynamical components analysis of fMRI data through kernel PCA. NeuroImage, 20, 34–49.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B (Methodological), 267–288.
Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73, 273–282.
Tipping, M. (2001). Sparse Bayesian Learning and the relevance vector machine. J ournal of Machine Learning Research, 1(211), 244.
Toussaint, P. J., Perlbarg, V., Bellec, P., Desarnaud, S., Lacomblez, L., Doyon, J., Habert, M. O., and Benali, H. (2012). Resting state FDG-PET functional connectivity as an early biomarker of Alzheimer's disease using conjoint univariate and independent component analyses. NeuroImage, 63(2) 936–946.
Tseng, P., & Yun, S. (2009). Block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization. Journal of optimization theory and applications, 140, 513–535.
Valente, G., De Martino, F., Esposito, F., Goebel, R., & Formisano, E. (2011). Predicting subject-driven actions and sensory experience in a virtual world with Relevance Vector Machine Regression of fMRI data. NeuroImage, 56, 651–661.
Van De Ville, D., & Lee, S.-W. (2012). Brain decoding: Opportunities and challenges for pattern recognition. Pattern Recognition Brain Decoding, 45, 2033–2034.
Vapnik, V. (1999). The nature of statistical learning theory-2nd edition. New York: Springer.
Vounou, M., Janousova, E., Wolz, R., Stein, J. L., Thompson, P. M., Rueckert, D., and Montana, G. (2011). Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease. Neuroimage, 60(1) 700–716.
Wager, T. D., Lindquist, M., & Kaplan, L. (2007). Meta-analysis of functional neuroimaging data: current and future directions. Social Cognitive and Affective Neuroscience, 2, 150–158.
Wan, J., Kim, S., Inlow, M., Nho, K., Swaminathan, S., Risacher, S., Fang, S., Weiner, M., Beg, M., & Wang, L. (2011). Hippocampal surface mapping of genetic risk factors in AD via sparse learning models. Medical Image Computing and Computer-Assisted Intervention, MICCAI, 2011, 376–383.
Wang, Y., Fan, Y., Bhatt, P., & Davatzikos, C. (2010). High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. NeuroImage, 50, 1519–1535.
Wang, X., Jiao, Y., and Lu, Z. (2011). Discriminative analysis of resting-state brain functional connectivity patterns of Attention-Deficit Hyperactivity Disorder using Kernel Principal Component Analysis. Paper presented at: Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth International Conference on (IEEE).
Wee, C.-Y., Yap, P.-T., Li, W., Denny, K., Browndyke, J. N., Potter, G. G., Welsh-Bohmer, K. A., Wang, L., & Shen, D. (2011). Enriched white matter connectivity networks for accurate identification of MCI patients. NeuroImage, 54, 1812–1822.
Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J. N., Potter, G. G., Welsh-Bohmer, K. A., Wang, L., & Shen, D. (2012). Identification of MCI individuals using structural and functional connectivity networks. NeuroImage, 59, 2045–2056.
Wold, S., Sjostrom, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.
Yan, J., Risacher, S., Kim, S., Simon, J., Li, T., Wan, J., Wang, H., Huang, H., Saykin, A., and Shen, L. (2012). Multimodal Neuroimaging Predictors for Cognitive Performance Using Structured Sparse Learning. Multimodal Brain Image Analysis, 7509, 1–17.
Yang, H., Liu, J., Sui, J., Pearlson, G., and Calhoun, V. D. (2010). A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia. Frontiers in human neuroscience, 4. doi:10.3389/fnhum.2010.00192.
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature methods, 8, 665–670.
Yoon, U., Lee, J. M., Im, K., Shin, Y. W., Cho, B. H., Kim, I. Y., Kwon, J. S., & Kim, S. I. (2007). Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia. NeuroImage, 34, 1405–1415.
Yoon, J. H., Tamir, D., Minzenberg, M. J., Ragland, J. D., Ursu, S., and Carter, C. S. (2008). Multivariate Pattern Analysis of Functional Magnetic Resonance Imaging Data Reveals Deficits in Distributed Representations in Schizophrenia. Biological Psychiatry, 64(12) 1035–1041.
Zeng, L.-L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P., Zhou, Z., Li, Y., & Hu, D. (2012). Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain, 135, 1498–1507. doi:10.1093/brain/aws059.
Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. (2011a). Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage, 55, 856–867.
Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. (2011b). Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage, 55, 856–867.
Zhu, C. Z., Zang, Y. F., Liang, M., Tian, L. X., He, Y., Li, X. B., Sui, M. Q., Wang, Y. F., & Jiang, T. Z. (2005). Discriminative analysis of brain function at resting-state for attention-deficit/hyperactivity disorder. Medical Image Computing and Computer-Assisted Intervention: MICCAI International Conference On Medical Image Computing And Computer-Assisted Intervention, 8, 468–475.
Zhu, C. Z., Zang, Y. F., Cao, Q. J., Yan, C. G., He, Y., Jiang, T. Z., Sui, M. Q., & Wang, Y. F. (2008). Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. NeuroImage, 40, 110–120.
Ziegler, G., Dahnke, R., Winkler, A. D., & Gaser, C. (2013). Partial least squares correlation of multivariate cognitive abilities and local brain structure in children and adolescents. NeuroImage, 82, 284–294.
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 301–320.
Acknowledgments
This research was funded by NIMH R01085667 and Pat Rutherford, Jr. Endowed Chair in Psychiatry (UT Medical School) grants to J.C.S.
Conflict of Interest
J.C.S has participated in research funded by Forest, Merck, BMS and GSK. He has been a speaker for Pfizer and Abbot.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mwangi, B., Tian, T.S. & Soares, J.C. A Review of Feature Reduction Techniques in Neuroimaging. Neuroinform 12, 229–244 (2014). https://doi.org/10.1007/s12021-013-9204-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-013-9204-3