Skip to main content

Advertisement

Log in

EEG/MEG Source Reconstruction with Spatial-Temporal Two-Way Regularized Regression

Neuroinformatics Aims and scope Submit manuscript

Abstract

In this work, we propose a spatial-temporal two-way regularized regression method for reconstructing neural source signals from EEG/MEG time course measurements. The proposed method estimates the dipole locations and amplitudes simultaneously through minimizing a single penalized least squares criterion. The novelty of our methodology is the simultaneous consideration of three desirable properties of the reconstructed source signals, that is, spatial focality, spatial smoothness, and temporal smoothness. The desirable properties are achieved by using three separate penalty functions in the penalized regression framework. Specifically, we impose a roughness penalty in the temporal domain for temporal smoothness, and a sparsity-inducing penalty and a graph Laplacian penalty in the spatial domain for spatial focality and smoothness. We develop a computational efficient multilevel block coordinate descent algorithm to implement the method. Using a simulation study with several settings of different spatial complexity and two real MEG examples, we show that the proposed method outperforms existing methods that use only a subset of the three penalty functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Adde, G., Clerc, M., Keriven, R. (2005). Imaging methods for MEG/EEG inverse problem. In In proceedings of joint meeting of 5th international conference on bioelectromagnetism and 5th international symposium on noninvasive functional source imaging (Vol. 7, pp. 111–114).

  • Auranen, T., Nummenmaa, A., Hämäläinen, M.S., Jääskeläinen, I.P., Lampinen, J., Vehtari, A., et al. (2005). Bayesian analysis of the neuromagnetic inverse problem with lp-norm priors. NeuroImage, 26(3), 870–884.

    Article  PubMed  Google Scholar 

  • Baillet, S., & Garnero, L. (1997). A bayesian approach to introducing anatomo-functional prior in the EEG/MEG inverse problem. IEEE Transactions on Biomedical Engineering, 44(5), 374–385.

    Article  PubMed  CAS  Google Scholar 

  • Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396.

    Article  Google Scholar 

  • Bolstad, A., Veen, B.V., Nowak, R. (2009). Space-time event sparse penalization for magneto-/electroencephalography. NeuroImage, 46(4), 1066–1081.

    Article  PubMed  Google Scholar 

  • Brent, R. (1973). Algorithms for minimization without derivatives. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Castillo, E.M., Simos, P.G., Wheless, J.W., Baumgartner, J.E., Breier, J.I., Billingsley, R.L., Sarkari, S., Fitzgerald, M.E., Papanicolaou, A.C. (2004). Integrating sensory and motor mapping in a comprehensive MEG protocol: clinical validity and replicability. NeuroImage, 21, 973–983.

    Article  PubMed  Google Scholar 

  • Cohen, D. (1968). Magnetoencephalography: evidence of magnetic fields produced by alpha rhythm currents. Science, 161, 784–786.

    Article  PubMed  CAS  Google Scholar 

  • Cvetković, D.M., Doob, M., Sachs, H. (1998). Spectra of graphs: theory and applications, 3rd edn. New York: Wiley.

    Google Scholar 

  • Darvas, F., Pantazis, D., Kucukaltun-Yildirim, E., Leahy, R. (2004). Mapping human brain function with MEG and EEG: methods and validation. NeoroImage, 23, 289–299.

    Article  Google Scholar 

  • Daunizeau, J., Mattout, J., Clonda, D., Goulard, B., Benali, H., Lina, J.-M. (2006). Bayesian spatio-temporal approach for EEG source reconstruction: conciliating ECD and distributed models. IEEE Transactions on Biomedical Engineering, 53(3), 503–516.

    Article  PubMed  Google Scholar 

  • Ding, L., & He, B. (2008). Sparse source imaging in EEG with accurate field modeling. Human Brain Mapping, 29(9), 1053–1067.

    Article  PubMed  Google Scholar 

  • Dogandžić, A., & Nehorai, A. (2000). Estimating evoked dipole responses in unknown spatially correlated noise with EEG/MEG arrays. IEEE Transactions on Signal Processing, 48(1), 13–25.

    Article  Google Scholar 

  • Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto, N., et al. (2008). Multiple sparse priors for the M/EEG inverse problem. NeuroImage, 39(3), 1104–1120.

    Article  PubMed  Google Scholar 

  • Gorodnitsky, I.F., & Rao, B.D. (1997). Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. Signal Processing, IEEE Transactions on, 45(3), 600–616.

    Article  Google Scholar 

  • Gramfort, A., Kowalski, M., Hämäläinen, M. (2012). Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods. Physics in Medicine and Biology, 57(7), 1937–1961.

    Article  PubMed  Google Scholar 

  • Green, P.J., & Silverman, B.W. (1994). Nonparametric regression and generalized linear models: a roughness penalty approach. Boca Raton: CRC Press.

    Google Scholar 

  • Hämäläinen, M., & Ilmoniemi, R.J. (1994). Interpreting magnetic fields of the brain: minimum norm estimates. Medical and Biological Engineering and Computing, 32(1), 35–42.

    Article  PubMed  Google Scholar 

  • Hämäläinen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V. (1993). Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65(2), 413–497.

    Article  Google Scholar 

  • Hastie, T., & Tibshirani, R. (1990). Generalized additive models. New York: Chapman and Hall.

    Google Scholar 

  • Haufe, S., Nikulin, V.V., Ziehe, A., Müller, K.R., Nolte, G. (2008). Combining sparsity and rotational invariance in EEG/MEG source reconstruction. NeuroImage, 2(42), 726–738.

    Article  Google Scholar 

  • Jeffs, B., Leahy, R., Singh, M. (1987). An evaluation of methods for neuromagnetic image reconstruction. IEEE Transactions on Biomedical Engineering, 34, 713–723.

    Article  PubMed  CAS  Google Scholar 

  • Jun, S.C., George, J.S., Paŕe-Blagoev, J., Plis, S.M., Ranken, D.M., Schmidt, D.M., Wood, C.C. (2005). Spatiotemporal bayesian inference dipole analysis for MEG neuroimaging data. NeuroImage, 29(1), 84–98.

    Article  Google Scholar 

  • Li, C., & Li, H. (2010). Variable selection and regression analysis for graph-structured covariates with an application to genomics. Annals of Applied Statistics, 4(3), 1498–1516.

    Article  PubMed  Google Scholar 

  • Lin, F.-H., Belliveau, J.W., Dale, A.M., Hämäläinen, M.S. (2006). Distributed current estimates using cortical orientation constraints. Human Brain Mapping, 27, 1–13.

    Article  PubMed  Google Scholar 

  • Matsuura, K., & Okabe, Y. (1995). Selective minimum-norm solution of the biomagnetic inverse problem. IEEE Transactions on Biomedical Engineering, 42, 608–615.

    Article  PubMed  CAS  Google Scholar 

  • Mosher, J., Lewis, P., Leahy, R. (1992). Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Transactions on Biomedical Engineering, 39(6), 541–557.

    Article  PubMed  CAS  Google Scholar 

  • Mosher, J.C., Leahy, R.M., Lewis, P.S. (1999). EEG and MEG: forward solutions for inverse methods. IEEE Transactions on Biomedical Engineering, 46(3), 245–259.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, A., Chen, K., Wang, N., Zhu, J. (2013). On the degrees of freedom of reduced-rank estimators in multivariate regression. unver review. Available at http://arxiv.org/pdf/1210.2464.pdf.

  • Nummenmaa, A., Auranen, T., Hämäläinen, M.S., Jääskeläinen, I.P., Lampinen, J., Sams, M., Vehtari, A. (2007). Hierarchical bayesian estimates of distributed MEG sources: theoretical aspects and comparison of variational and MCMC methods. NeuroImage, 35(2), 669–685.

    Article  PubMed  Google Scholar 

  • Ou, W., Hämäläinen, M., Golland, P. (2009). A distributed spatio-temporal EEG/MEG inverse solver. NeuroImage, 44(3), 932–46.

    Article  PubMed  Google Scholar 

  • Papanicolaou, A. (1995). An introduction to magnetoencephalography with some applications. Brain and Cognition, 27(3), 331–352.

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Marqui, R.D. (1999). Review of methods for solving the EEG inverse problem. International Journal of Bioelectromagnetism, 1, 75–86.

    Google Scholar 

  • Pascual-Marqui, R.D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods & Findings in Experimental & Clinical Pharmacology, 24(1), 5–12.

    Google Scholar 

  • Pascual-Marqui, R.D., Michel, C.M., Lehmann, D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18, 49–65.

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2011). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

  • Scherg, M., & von Cramon, D. (1986). Evoked dipole source potentials of the human auditory cortex. Electroencephalography and clinical neurophysiology, 65, 344–360.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 43(3), 276–280.

    Article  Google Scholar 

  • Sorrentino, A., Johansen, A., Aston, J., Nichols, T., Kendall, W. (2012). Dynamic filtering of static dipoles in magnetoencephalography. Arxiv preprint arXiv:1205.6310.

  • Tenenbaum, J.B., de Silva, V., Langford, J.C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319–2323.

    Article  PubMed  CAS  Google Scholar 

  • Tian, T.S., & Li, Z. (2011). A spatio-temporal solution for the EEG/MEG inverse problem using group penalization methods. Statistics and Its Interface, 4(4), 521–534.

    Article  Google Scholar 

  • Tian, T.S., Huang, J.Z., Shen, H., Li, Z. (2012). A two-way regularization method for EEG/MEG source reconstruction. Annals of Applied Statistics, 6(3), 1021–1046.

    Article  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B, 58, 267–288.

    Google Scholar 

  • Trujillo-Barreto, N., Aubert-Vázquez, E., Penny, W. (2008). Bayesian m/eeg source reconstruction with spatio-temporal priors. NeuroImage, 39(1), 318–335.

    Article  PubMed  Google Scholar 

  • Tseng, P. (2001). Convergence of block coordinate descent method for nondifferentiable maximization. Journal of Optimization Theory and Applications, 109(3), 475–494.

    Article  Google Scholar 

  • Uutela, K., Hämäläinen, M., Somersalo, E. (1999). Visualization of magnetoencephalographic data using minimum current estimates. NeuroImage, 10, 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Valdés-Sosa, P., Vega-Hernández, M., Sánchez-Bornot, J., Martínez-Montes, E., Bobes, M. (2009). EEG source imaging with spatio-temporal tomographic nonnegative independent component analysis. Human Brain Mapping, 30, 1898–1910.

    Article  PubMed  Google Scholar 

  • Van Veen, B.D., & Buckley, K.M. (1988). Beamforming: a versatile approach to spatial filtering. IEEE ASSP Magazine, 5, 4–24.

    Article  Google Scholar 

  • Van Veen, B.D., van Drongelen, W., Yuchtman, M., Suzuki, A. (1997). Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on Biomedical Engineering, 44, 867–880.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, T., Kamijo, K., Kenmochi, A., Fukuzumi, S., Kiyuna, T., Takaki, Y., Kuroiwa, Y. (2000). Multiple equivalent current dipole source localization of visual event-related potentials during oddball paradigm with motor response. Brain Topography, 12, 159–175.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by NIDA (1 RC1 DA029425-01), NSF (DMS-09-07170, DMS-10-07618, CMMI-0800575, DMS-11-06912, DMS-12-08952, and DMS-12-08786), and King Abdullah University of Science and Technology (KUS-CI-016-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Siva Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, T.S., Huang, J.Z., Shen, H. et al. EEG/MEG Source Reconstruction with Spatial-Temporal Two-Way Regularized Regression. Neuroinform 11, 477–493 (2013). https://doi.org/10.1007/s12021-013-9193-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-013-9193-2

Keywords

Navigation