Versatile Morphometric Analysis and Visualization of the Three-Dimensional Structure of Neurons

Abstract

The computational properties of a neuron are intimately related to its morphology. However, unlike electrophysiological properties, it is not straightforward to collapse the complexity of the three-dimensional (3D) structure into a small set of measurements accurately describing the structural properties. This strong limitation leads to the fact that many studies involving morphology related questions often rely solely on empirical analysis and qualitative description. It is possible however to acquire hierarchical lists of positions and diameters of points describing the spatial structure of the neuron. While there is a number of both commercially and freely available solutions to import and analyze this data, few are extendable in the sense of providing the possibility to define novel morphometric measurements in an easy to use programming environment. Fewer are capable of performing morphometric analysis where the output is defined over the topology of the neuron, which naturally requires powerful visualization tools. The computer application presented here, Py3DN, is an open-source solution providing novel tools to analyze and visualize 3D data collected with the widely used Neurolucida (MBF) system. It allows the construction of mathematical representations of neuronal topology, detailed visualization and the possibility to define non-standard morphometric analysis on the neuronal structures. Above all, it provides a flexible and extendable environment where new types of analyses can be easily set up allowing a high degree of freedom to formulate and test new hypotheses. The application was developed in Python and uses Blender (open-source software) to produce detailed 3D data representations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Billeci, L., Magliaro, C., et al. (2013). NEuronMOrphological analysis tool: open-source software for quantitative morphometrics. Front Neuroinform, 7, 2.

    PubMed  Article  Google Scholar 

  2. Bower, J. M., & Beeman, D. (1998). The book of GENESIS : exploring realistic neural models with the GEneral NEural SImulation System. Santa Clara, Calif: TELOS.

    Google Scholar 

  3. Budd, J. M., Kovacs, K., et al. (2010). Neocortical axon arbors trade-off material and conduction delay conservation. PLoS Computational Biology, 6(3), e1000711.

    PubMed  Article  Google Scholar 

  4. Cuntz, H., Forstner, F., et al. (2011). The TREES toolbox–probing the basis of axonal and dendritic branching. Neuroinformatics, 9(1), 91–96.

    PubMed  Article  Google Scholar 

  5. Gulledge, A. T., Kampa, B. M., et al. (2005). Synaptic integration in dendritic trees. Journal of Neurobiology, 64(1), 75–90.

    PubMed  Article  CAS  Google Scholar 

  6. Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9(6), 1179–1209.

    PubMed  Article  CAS  Google Scholar 

  7. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544.

    PubMed  CAS  Google Scholar 

  8. Jaffe, D. B., & Carnevale, N. T. (1999). Passive normalization of synaptic integration influenced by dendritic architecture. Journal of Neurophysiology, 82(6), 3268–3285.

    PubMed  CAS  Google Scholar 

  9. Joris, P. X., Smith, P. H., et al. (1998). Coincidence detection in the auditory system: 50 years after Jeffress. Neuron, 21(6), 1235–1238.

    PubMed  Article  CAS  Google Scholar 

  10. Kalisman, N., Silberberg, G., et al. (2003). Deriving physical connectivity from neuronal morphology. Biological Cybernetics, 88(3), 210–218.

    PubMed  Article  Google Scholar 

  11. Manor, Y., Gonczarowski, J., et al. (1991a). Propagation of action potentials along complex axonal trees. Model and implementation. Biophysical Journal, 60(6), 1411–1423.

    PubMed  Article  CAS  Google Scholar 

  12. Manor, Y., Koch, C., et al. (1991b). Effect of geometrical irregularities on propagation delay in axonal trees. Biophysical Journal, 60(6), 1424–1437.

    PubMed  Article  CAS  Google Scholar 

  13. Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. Journal of Neurophysiology, 30(5), 1138–1168.

    PubMed  CAS  Google Scholar 

  14. Rinzel, J., & Rall, W. (1974). Transient response in a dendritic neuron model for current injected at one branch. Biophysical Journal, 14(10), 759–790.

    PubMed  Article  CAS  Google Scholar 

  15. Ropireddy, D., & Ascoli, G. A. (2011). Potential synaptic connectivity of different neurons onto pyramidal cells in a 3D reconstruction of the rat hippocampus. Front Neuroinform, 5, 5.

    PubMed  Article  Google Scholar 

  16. Scorcioni, R., Polavaram, S., et al. (2008). L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 3(5), 866–876.

    PubMed  Article  CAS  Google Scholar 

  17. Segev, I., & London, M. (2000). Untangling dendrites with quantitative models. Science, 290(5492), 744–750.

    PubMed  Article  CAS  Google Scholar 

  18. Shepherd, G. M., Raastad, M., et al. (2002). General and variable features of varicosity spacing along unmyelinated axons in the hippocampus and cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 99(9), 6340–6345.

    PubMed  Article  CAS  Google Scholar 

  19. Szucs, P., Luz, L. L., et al. (2013). Axon diversity of lamina I local-circuit neurons in the lumbar spinal cord. Journal of Comparative Neurology. doi: 10.1002/cne.23311.

  20. van Pelt, J., Carnell, A., et al. (2010). An algorithm for finding candidate synaptic sites in computer generated networks of neurons with realistic morphologies. Frontiers in Computational Neuroscience, 4, 148.

    PubMed  Google Scholar 

  21. Wearne, S. L., Rodriguez, A., et al. (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136(3), 661–680.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

Research partly funded by the European Regional Development Fund through the program COMPETE and by the Portuguese Government through the FCT—Fundação para a Ciência e a Tecnologia under the project PEst-C/MAT/UI0144/2011. PA and PSz thanks FCT for financial support through the Ciência-2007 and POPH-QREN programs. MS was supported by FCT grant SFRH/BD/60690/2009.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulo Aguiar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aguiar, P., Sousa, M. & Szucs, P. Versatile Morphometric Analysis and Visualization of the Three-Dimensional Structure of Neurons. Neuroinform 11, 393–403 (2013). https://doi.org/10.1007/s12021-013-9188-z

Download citation

Keywords

  • Neuromorphology
  • Mesh calculation
  • Morphometric analysis
  • Neuronal reconstruction data
  • 3D visualization