Skip to main content

Advertisement

Log in

Semi-Supervised Multimodal Relevance Vector Regression Improves Cognitive Performance Estimation from Imaging and Biological Biomarkers

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Accurate estimation of cognitive scores for patients can help track the progress of neurological diseases. In this paper, we present a novel semi-supervised multimodal relevance vector regression (SM-RVR) method for predicting clinical scores of neurological diseases from multimodal imaging and biological biomarker, to help evaluate pathological stage and predict progression of diseases, e.g., Alzheimer’s diseases (AD). Unlike most existing methods, we predict clinical scores from multimodal (imaging and biological) biomarkers, including MRI, FDG-PET, and CSF. Considering that the clinical scores of mild cognitive impairment (MCI) subjects are often less stable compared to those of AD and normal control (NC) subjects due to the heterogeneity of MCI, we use only the multimodal data of MCI subjects, but no corresponding clinical scores, to train a semi-supervised model for enhancing the estimation of clinical scores for AD and NC subjects. We also develop a new strategy for selecting the most informative MCI subjects. We evaluate the performance of our approach on 202 subjects with all three modalities of data (MRI, FDG-PET and CSF) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The experimental results show that our SM-RVR method achieves a root-mean-square error (RMSE) of 1.91 and a correlation coefficient (CORR) of 0.80 for estimating the MMSE scores, and also a RMSE of 4.45 and a CORR of 0.78 for estimating the ADAS-Cog scores, demonstrating very promising performances in AD studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://www.miketipping.com/index.php?page=rvm

References

  • Adams, N. (2009). Semi-supervised learning. Journal of the Royal Statistical Society Series a-Statistics in Society, 172, 530–530.

    Article  Google Scholar 

  • Belkin, M., & Niyogi, P. (2004). Semi-supervised learning on Riemannian manifolds. Machine Learning, 56, 209–239.

    Article  Google Scholar 

  • Belkin, M., Matveeva, I., & Niyogi, P. (2004). Regularization and semi-supervised learning on large graphs. Learning Theory, Proceedings, 3120, 624–638.

    Article  Google Scholar 

  • Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, 2399–2434.

    Google Scholar 

  • Bouwman, F. H., Schoonenboom, S. N., van der Flier, W. M., van Elk, E. J., Kok, A., Barkhof, F., et al. (2007). CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment. Neurobiology of Aging, 28, 1070–1074.

    Article  PubMed  CAS  Google Scholar 

  • Bouwman, F. H., van der Flier, W. M., Schoonenboom, N. S. M., van Elk, E. J., Kok, A., Rijmen, F., et al. (2007). Longitudinal changes of CSF biomarkers in memory clinic patients. Neurology, 69, 1006–1011.

    Article  PubMed  CAS  Google Scholar 

  • Bruzzone, L., Chi, M. M., & Marconcini, M. (2006). A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 44, 3363–3373.

    Article  Google Scholar 

  • Caselli, R. J., Reiman, E. M., Locke, D. E., Hutton, M. L., Hentz, J. G., Hoffman-Snyder, C., et al. (2007). Cognitive domain decline in healthy apolipoprotein E epsilon4 homozygotes before the diagnosis of mild cognitive impairment. Archives of Neurology, 64, 1306–1311.

    Article  PubMed  Google Scholar 

  • Caselli, R. J., Dueck, A. C., Osborne, D., Sabbagh, M. N., Connor, D. J., Ahern, G. L., et al. (2009). Longitudinal modeling of age-related memory decline and the APOE epsilon 4 effect. The New England Journal of Medicine, 361, 255–263.

    Article  PubMed  CAS  Google Scholar 

  • Chetelat, G., Eustache, F., Viader, F., De la Sayette, V., Pelerin, A., Mezenge, F., et al. (2005). FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase, 11, 14–25.

    Article  PubMed  Google Scholar 

  • de Leon, M. J., Mosconi, L., Li, J., De Santi, S., Yao, Y., Tsui, W. H., et al. (2007). Longitudinal CSF isoprostane and MRI atrophy in the progression to AD. Journal of Neurology, 254, 1666–1675.

    Article  PubMed  Google Scholar 

  • De Santi, S., de Leon, M. J., Rusinek, H., Convit, A., Tarshish, C. Y., Roche, A., et al. (2001). Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiology of Aging, 22, 529–539.

    Article  PubMed  Google Scholar 

  • Diehl, J., Grimmer, T., Drzezga, A., Riemenschneider, M., Forstl, H., & Kurz, A. (2004). Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiology of Aging, 25, 1051–1056.

    Article  PubMed  CAS  Google Scholar 

  • Ding, L., & Zhao, P. B. (2010). Semi-supervised learning with varifold Laplacians. Neurocomputing, 73, 1580–1586.

    Article  Google Scholar 

  • Drzezga, A., Lautenschlager, N., Siebner, H., Riemenschneider, M., Willoch, F., Minoshima, S., et al. (2003). Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. European Journal of Nuclear Medicine and Molecular Imaging, 30, 1104–1113.

    Article  PubMed  Google Scholar 

  • Duchesne, S., Caroli, A., Geroldi, C., Collins, D. L., & Frisoni, G. B. (2009). Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. NeuroImage, 47, 1363–1370.

    Article  PubMed  Google Scholar 

  • Fan, Y., Batmanghelich, N., Clark, C. M., Davatzikos, C., & Initia, A. D. N. (2008). Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage, 39, 1731–1743.

    Article  PubMed  Google Scholar 

  • Fan, Y., Resnick, S. M., Wu, X., & Davatzikos, C. (2008). Structural and functional biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern classification study. NeuroImage, 41, 277–285.

    Article  PubMed  Google Scholar 

  • Fan, Y., Kaufer, D., Shen, D., (2010). Joint estimation of multiple clinical variables of neurological diseases from imaging patterns. In Proceedings of 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2010), 852–855.

  • Fellgiebel, A., Scheurich, A., Bartenstein, P., & Muller, M. J. (2007). FDG-PET and CSF phospho-tau for prediction of cognitive decline in mild cognitive impairment. Psychiatry Research-Neuroimaging, 155, 167–171.

    Article  CAS  Google Scholar 

  • Filipovych, R., Davatzikos, C., & Initia, A. D. N. (2011). Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI). NeuroImage, 55, 1109–1119.

    Article  PubMed  Google Scholar 

  • Fjell, A. M., Walhovd, K. B., Fennema-Notestine, C., McEvoy, L. K., Hagler, D. J., Holland, D., et al. (2010). CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. Journal of Neuroscience, 30, 2088–2101.

    Article  PubMed  CAS  Google Scholar 

  • Geroldi, C., Rossi, R., Calvagna, C., Testa, C., Bresciani, L., Binetti, G., et al. (2006). Medial temporal atrophy but not memory deficit predicts progression to dementia in patients with mild cognitive impairment. Journal of Neurology, Neurosurgery, and Psychiatry, 77, 1219–1222.

    Article  PubMed  CAS  Google Scholar 

  • Hinrichs, C., Singh, V., Mukherjee, L., Xu, G. F., Chung, M. K., & Johnson, S. C. (2009a). Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. NeuroImage, 48, 138–149.

    Article  Google Scholar 

  • Hinrichs, C., Singh, V., Xu, G., & Johnson, S. (2009b). MKL for robust multi-modality AD classification. Medical Image Computing and Computer Assisted Intervention, 12, 786–794.

    Google Scholar 

  • Hinrichs, C., Singh, V., Xu, G., & Johnson, S. C. (2011). Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. NeuroImage, 55, 574–589.

    Article  PubMed  Google Scholar 

  • Inoue, M., Jimbo, D., Taniguchi, M., & Urakami, K. (2011). Touch Panel-type Dementia Assessment Scale: a new computer-based rating scale for Alzheimer’s disease. Psychogeriatrics, 11, 28–33.

    Article  PubMed  Google Scholar 

  • Ni, B. B., Yan, S. C., & Kassim, A. A. (2012). Learning a propagable graph for semisupervised learning: classification and regression. Ieee Transactions on Knowledge and Data Engineering, 24, 114–126.

    Article  Google Scholar 

  • Rakotomamonjy, A., Bach, F. R., Canu, S., & Grandvalet, Y. (2008). SimpleMKL. Journal of Machine Learning Research, 9, 2491–2521.

    Google Scholar 

  • Reiman, E. M., Caselli, R. J., Yun, L. S., Chen, K. W., Bandy, D., Minoshima, S., et al. (1996). Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. The New England Journal of Medicine, 334, 752–758.

    Article  PubMed  CAS  Google Scholar 

  • Reiman, E. M., Chen, K. W., Liu, X. F., Bandy, D., Yu, M. X., Lee, W. D., et al. (2009). Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 106, 6820–6825.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, W. G., Mohs, R. C., & Davis, K. L. (1984). A new rating scale for Alzheimer’s disease. The American Journal of Psychiatry, 141, 1356–1364.

    PubMed  CAS  Google Scholar 

  • Shattuck, D. W., Sandor-Leahy, S. R., Schaper, K. A., Rottenberg, D. A., & Leahy, R. M. (2001). Magnetic resonance image tissue classification using a partial volume model. NeuroImage, 13, 856–876.

    Article  PubMed  CAS  Google Scholar 

  • Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17, 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.

    Article  PubMed  Google Scholar 

  • Stonnington, C. M., Chu, C., Kloppel, S., Jack, C. R., Ashburner, J., Frackowiak, R. S. J., et al. (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage, 51, 1405–1413.

    Article  PubMed  Google Scholar 

  • Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211–244.

    Google Scholar 

  • Twamley, E. W., Ropacki, S. A. L., & Bondi, M. W. (2006). Neuropsychological and neuroimaging changes in preclinical Alzheimer’s disease. Journal of the International Neuropsychological Society, 12, 707–735.

    Article  PubMed  Google Scholar 

  • Vemuri, P., Wiste, H. J., Weigand, S. D., Shaw, L. M., Trojanowski, J. Q., Weiner, M. W., et al. (2009). MRI and CSF biomarkers in normal, MCI, and AD subjects predicting future clinical change. Neurology, 73, 294–301.

    Article  PubMed  CAS  Google Scholar 

  • Visser, P. J., Verhey, F. R. J., Hofman, P. A., Scheltens, P., & Jolles, J. (2002). Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. Journal of Neurology, Neurosurgery, and Psychiatry, 72, 491–497.

    PubMed  CAS  Google Scholar 

  • Walhovd, K. B., Fjell, A. M., Brewer, J., McEvoy, L. K., Fennema-Notestine, C., Hagler, D. J., Jr., et al. (2010). Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR. American Journal of Neuroradiology, 31, 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Walhovd, K. B., Fjell, A. M., Dale, A. M., McEvoy, L. K., Brewer, J., Karow, D. S., et al. (2010b). Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiology of Aging, 31, 1107–1121.

    Article  CAS  Google Scholar 

  • Wang, Z., Chen, S. C., & Sun, T. K. (2008). MultiK-MHKS: a novel multiple kernel learning algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 348–353.

    Article  PubMed  Google Scholar 

  • Wang, Y., Fan, Y., Bhatt, P., & Davatzikos, C. (2010). High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. NeuroImage, 50, 1519–1535.

    Article  PubMed  Google Scholar 

  • Xu, Z., Jin, R., Yang, H., King, I., Lyu, M. R. (2010). Simple and Efficient Multiple Kernel Learning by Group Lasso. In Proceedings of the 27th Conference on Machine Learning (ICML 2010).

  • Zhang, D., & Shen, D. (2011). Semi-supervised multimodal classification of Alzheimer’s disease. In Proceedings of 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2011), 1628–1631.

  • Zhang, D., & Shen, D. (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage, 59, 895–907.

    Article  PubMed  Google Scholar 

  • Zhang, Y. Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20, 45–57.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., & Initia, A. D. N. (2011). Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage, 55, 856–867.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., as well as non-profit partners the Alzheimer’s Association and Alzheimer’s Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration. Private sector contributions to ADNI are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles.

This work was supported in part by NIH grants EB006733, EB008374, EB009634, and AG041721, by NSFC grants 61075010 and 61170151, by SRFDP grant 20123218110009, by Qing Lan Project, and also by The National Basic Research Program of China (973 Program) grant No. 2010CB732505.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Daoqiang Zhang or Dinggang Shen.

Additional information

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: www.loni.ucla.edu/ADNI/Collaboration/ADNI_Authorship_list.pdf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, B., Zhang, D., Chen, S. et al. Semi-Supervised Multimodal Relevance Vector Regression Improves Cognitive Performance Estimation from Imaging and Biological Biomarkers. Neuroinform 11, 339–353 (2013). https://doi.org/10.1007/s12021-013-9180-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-013-9180-7

Keywords

Navigation