Skip to main content

Advertisement

Log in

iBEAT: A Toolbox for Infant Brain Magnetic Resonance Image Processing

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

It’s a great challenge to analyze infant brain MR images due to the small brain size and low contrast of the developing brain tissues. We have developed an Infant Brain Extraction and Analysis Toolbox (iBEAT) for various processing of magnetic resonance (MR) images of infant brains. Several major functions generally used in infant brain analysis are integrated in iBEAT, including image preprocessing, brain extraction, tissue segmentation, and brain labeling. The functions of brain extraction, tissue segmentation, and brain labeling are provided respectively by three state-of-the-art algorithms. First, a learning-based meta-algorithm which integrates a group of brain extraction results generated by the two existing brain extraction algorithms (BET and BSE) was implemented in iBEAT for extraction of infant brains from MR images. Second, a level-sets-based tissue segmentation algorithm that utilizes multimodality information, cortical thickness constraint, and longitudinal consistency constraint was also included in iBEAT for segmentation of infant brain tissues. Third, HAMMER (standing for Hierarchical Attribute Matching Mechanism for Elastic Registration) registration algorithm was further included in iBEAT to label regions of interest (ROIs) of infant brain images by warping the pre-labeled ROIs of a template to the infant brain image space. By integration of these state-of-the-art methods, iBEAT is able to segment and label infant brain MR images accurately. Moreover, it can process not only single-time-point images for cross-sectional studies, but also multiple-time-point images of the same infant for longitudinal studies. The performance of iBEAT has been comprehensively evaluated with hundreds of infant brain images. A Linux-based standalone package of iBEAT is freely available at http://www.nitrc.org/projects/ibeat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Armstrong, E., Schleicher, A., Omran, H., Curtis, M., & Zilles, K. (1995). The ontogeny of human gyrification. Cerebral Cortex, 5, 56–63.

    Article  PubMed  CAS  Google Scholar 

  • Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10, 266–277.

    Article  PubMed  CAS  Google Scholar 

  • Chi, J., Dooling, E., & Gilles, F. (1977). Gyral development of the human brain. Annals of Neurology, 1, 86–93.

    Article  PubMed  CAS  Google Scholar 

  • Crum, W. R., Griffin, L. D., Hill, D. L. G., & Hawkes, D. J. (2003). Zen and the art of medical image registration: correspondence, homology, and quality. NeuroImage, 20, 1425–1437.

    Article  PubMed  CAS  Google Scholar 

  • Dubois, J., Benders, M., Cachia, A., Lazeyras, F., Ha-Vinh Leuchter, R., Sizonenko, S. V., Borradori-Tolsa, C., Mangin, J. F., & Huppi, P. S. (2008). Mapping the early cortical folding process in the preterm newborn brain. Cerebral Cortex, 18, 1444–1454.

    Article  PubMed  CAS  Google Scholar 

  • Eskildsen, S. F., Coupe, P., Fonov, V., Manjon, J. V., Leung, K. K., Guizard, N., Wassef, S. N., Ostergaard, L. R., & Collins, D. L. (2012). BEaST: Brain extraction based on nonlocal segmentation technique. NeuroImage, 59, 2362–2373.

    Article  PubMed  Google Scholar 

  • Fan, Y., Shi, F., Smith, J. K., Lin, W., Gilmore, J. H., & Shen, D. (2011). Brain anatomical networks in early human brain development. NeuroImage, 54, 1862–1871.

    Article  PubMed  Google Scholar 

  • Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A. M. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.

    Article  PubMed  CAS  Google Scholar 

  • Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315, 972–976.

    Article  PubMed  CAS  Google Scholar 

  • Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W. (2007). Statistical parametric mapping: The analysis of functional brain images. Academic Press.

  • Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., Zhu, H., Hamer, R. M., Styner, M., & Shen, D. (2011). Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cerebral Cortex. doi:10.1093/cercor/bhr327.

  • He, B., Dai, Y. K., Astolfi, L., Babiloni, F., Yuan, H., & Yang, L. (2011). eConnectome: A MATLAB toolbox for mapping and imaging of brain functional connectivity. Journal of Neuroscience Methods, 195, 261–269.

    Article  PubMed  Google Scholar 

  • Holmes, C. J., Hoge, R., Collins, L., Woods, R., Toga, A. W., & Evans, A. C. (1998). Enhancement of MR images using registration for signal averaging. Journal of Computer Assisted Tomography, 22, 324–333.

    Article  PubMed  CAS  Google Scholar 

  • Ibanez, L., Schroeder, W., Ng, L., J., C. (2003). The ITK software guide: The insight segmentation and registration toolkit (version 1.4). Kitware, Inc.

  • Iglesias, J. E., Liu, C. Y., Thompson, P. M., & Tu, Z. W. (2011). Robust brain extraction across datasets and comparison with publicly available methods. IEEE Transactions on Medical Imaging, 30, 1617–1634.

    Article  PubMed  Google Scholar 

  • Kagan, J., & Herschkowitz, N. (2005). Young mind in a growing brain. Mahwah, N.J: Lawrence Erlbaum.

    Google Scholar 

  • Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., Hamer, R. M., Lin, W., Gerig, G., & Gilmore, J. H. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28, 12176–12182.

    Article  PubMed  CAS  Google Scholar 

  • Leung, K. K., Barnes, J., Modat, M., Ridgway, G. R., Bartlett, J. W., Fox, N. C., Ourselin, S., & Initia, A. D. N. (2011). Brain MAPS: An automated, accurate and robust brain extraction technique using a template library. NeuroImage, 55, 1091–1108.

    Article  PubMed  Google Scholar 

  • Luan, H.X., Qi, F.H., Xue, Z., Chen, L.Y., & Shen, D.G. (2008). Multimodality image registration by maximization of quantitative-qualitative measure of mutual information. Pattern Recognition, 41, 285-298.

    Google Scholar 

  • Nie, J., Li, G., Wang, L., Gilmore, J. H., Lin, W., & Shen, D. (2011). A computational growth model for measuring dynamic cortical development in the first year of life. Cerebral Cortex. doi:10.1093/cercor/bhr293.

  • Prastawa, M., Gilmore, J. H., Lin, W. L., & Gerig, G. (2005). Automatic segmentation of MR images of the developing newborn brain. Medical Image Analysis, 9, 457–466.

    Article  PubMed  Google Scholar 

  • Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioural Neurology, 12, 191–200.

    PubMed  Google Scholar 

  • Sadananthan, S. A., Zheng, W. L., Chee, M. W. L., & Zagorodnov, V. (2010). Skull stripping using graph cuts. NeuroImage, 49, 225–237.

    Article  PubMed  Google Scholar 

  • Shattuck, D. W., & Leahy, R. M. (2001). Automated graph-based analysis and correction of cortical volume topology. IEEE Transactions on Medical Imaging, 20, 1167–1177.

    Article  PubMed  CAS  Google Scholar 

  • Shen, D. G., & Davatzikos, C. (2002). HAMMER: Hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging, 21, 1421–1439.

    Article  PubMed  Google Scholar 

  • Shen, D. G., & Davatzikos, C. (2004). Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping. NeuroImage, 21, 1508–1517.

    Article  PubMed  Google Scholar 

  • Shi, F., Fan, Y., Tang, S. Y., Gilmore, J. H., Lin, W. L., & Shen, D. G. (2010). Neonatal brain image segmentation in longitudinal MRI studies. NeuroImage, 49, 391–400.

    Article  PubMed  Google Scholar 

  • Shi, F., Wang, L., Gilmore, J. H., Lin, W., & Shen, D. (2011). Learning-based meta-algorithm for MRI brain extraction. Medical Image Computing and Computer-Assisted Intervention, 14, 313–321.

    PubMed  Google Scholar 

  • Shi, F., Yap, P. T., Wu, G., Jia, H., Gilmore, J. H., Lin, W., & Shen, D. (2011). Infant brain atlases from neonates to 1- and 2-year-olds. PLoS One, 6, e18746.

    Article  PubMed  CAS  Google Scholar 

  • Shi, F., Wang, L., Dai, Y., Gilmore, J. H., Lin, W., Shen, D. (2012a). Pediatric brain extraction using learning-based meta-algorithm. Neuroimage. doi:10.1016/j.neuroimage.2012.05.042.

  • Shi, F., Yap, P. T., Gao, W., Lin, W., Gilmore, J. H., Shen, D. (2012b). Altered structural connectivity in neonates at genetic risk for schizophrenia: A combined study using morphological and white matter networks. Neuroimage. doi:10.1016/j.neuroimage.2012.05.026.

  • Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17, 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.

    Article  PubMed  Google Scholar 

  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R. K., Saunders, J., Vickers, J., Zhang, Y. Y., De Stefano, N., Brady, J. M., & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, S208–S219.

    Article  PubMed  Google Scholar 

  • Thirion, J. P. (1998). Image matching as a diffusion process: an analogy with Maxwell's demons. Medical Image Analysis, 2, 243–260.

    Article  PubMed  CAS  Google Scholar 

  • Tian, J., Xue, J., Dai, Y., Chen, J., & Zheng, J. (2008). A novel software platform for medical image processing and analyzing. IEEE Transactions on Information Technology in Biomedicine, 12, 800–812.

    Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.

    Article  PubMed  CAS  Google Scholar 

  • Utsunomiya, H., Takano, K., Okazaki, M., & Mitsudome, A. (1999). Development of the temporal lobe in infants and children: Analysis by MR-based volumetry. American Journal of Neuroradiology, 20, 717–723.

    PubMed  CAS  Google Scholar 

  • Wang, L., Shi, F., Lin, W., Gilmore, J. H., & Shen, D. (2011). Automatic segmentation of neonatal images using convex optimization and coupled level sets. NeuroImage, 58, 805–817.

    Article  PubMed  Google Scholar 

  • Wang, L., Shi, F., Yap, P. T., Gilmore, J. H., Lin, W., & Shen, D. (2011). Accurate and consistent 4D segmentation of serial infant brain MR images. Lecture Notes in Computer Science, 7012(2011), 93–101.

    Article  Google Scholar 

  • Wang, L., Shi, F., Yap, P. T., Lin, W., Gilmore, J. H., & Shen, D. (2011). Longitudinally guided level sets for consistent tissue segmentation of neonates. Human Brain Mapping. doi:10.1002/hbm.21486.

  • Wu, G., Qi, F., & Shen, D. (2006). Learning-based deformable registration of MR brain images. IEEE Transactions on Medical Imaging, 25, 1145–1157.

    Google Scholar 

  • Wu, G., Wang, Q., Jia, H., & Shen, D. (2012). Feature-based groupwise registration by hierarchical anatomical correspondence detection. Human Brain Mapping, 33, 253–271.

    Article  PubMed  Google Scholar 

  • Wu, G., Wang, Q., & Shen, D. (2012). Registration of longitudinal brain image sequences with implicit template and spatial-temporal heuristics. Neuroimage, 59, 404–421.

    Google Scholar 

  • Xue, H., Srinivasan, L., Jiang, S., Rutherford, M., Edwards, A. D., Rueckert, D., & Hajnal, J. V. (2007). Automatic segmentation and reconstruction of the cortex from neonatal MRI. NeuroImage, 38, 461–477.

    Article  PubMed  Google Scholar 

  • Xue, Z., Shen, D., & Davatzikos, C. (2006). CLASSIC: consistent longitudinal alignment and segmentation for serial image computing. Neuroimage, 30, 388–399.

    Google Scholar 

  • Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage, 31, 1116–1128.

    Article  PubMed  Google Scholar 

  • Zeng, X., Staib, L. H., Schultz, R. T., & Duncan, J. S. (1999). Segmentation and measurement of the cortex from 3D MR images using coupled surfaces propagation. IEEE Transactions on Medical Imaging, 18, 100–111.

    Article  Google Scholar 

Download references

Acknowledgements

The development of iBEAT was supported in part by NIH grants EB006733, EB008374, EB009634, MH088520, and AG041721.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, Y., Shi, F., Wang, L. et al. iBEAT: A Toolbox for Infant Brain Magnetic Resonance Image Processing. Neuroinform 11, 211–225 (2013). https://doi.org/10.1007/s12021-012-9164-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-012-9164-z

Keywords

Navigation