Skip to main content

Advertisement

Log in

A Statistical Framework for Inter-Group Image Registration

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Groupwise image registration plays an important role in medical image analysis. The principle of groupwise image registration is to align a given set of images to a hidden template space in an iteratively manner without explicitly selecting any individual image as the template. Although many approaches have been proposed to address the groupwise image registration problem for registering a single group of images, few attentions and efforts have been paid to the registration problem between two or more different groups of images. In this paper, we propose a statistical framework to address the registration problems between two different image groups. The main contributions of this paper lie in the following aspects: (1) In this paper, we demonstrate that directly registering the group mean images estimated from two different image groups is not sufficient to establish the reliable transformation from one image group to the other image group. (2) A novel statistical framework is proposed to extract anatomical features from the white matter, gray matter and cerebrospinal fluid tissue maps of all aligned images as morphological signatures for each voxel. The extracted features provide much richer anatomical information than the voxel intensity of the group mean image, and can be integrated with the multi-channel Demons registration algorithm to perform the registration process. (3) The proposed method has been extensively evaluated on two publicly available brain MRI databases: the LONI LPBA40 and the IXI databases, and it is also compared with a conventional inter-group image registration approach which directly performs deformable registration between the group mean images of two image groups. Experimental results show that the proposed method consistently achieves higher registration accuracy than the method under comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://biomedic.doc.ic.ac.uk/brain-development/

  2. http://www.itk.org/

References

  • Aljabar, P., Bhatia, K. K., Hajnal, J. V., Boardman, J. R., Srinivasan, L., Rutherford, M. A., et al. Analysis of growth in the developing brain using non-rigid registration. In Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on, 2006 (pp. 201–204)

  • Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry: the methods. Neuroimage, 11(6), 805–821.

    Article  PubMed  CAS  Google Scholar 

  • Avants, B., Cook, P. A., McMillan, C., Grossman, M., Tustison, N. J., Zheng, Y., et al. (2010). Sparse unbiased analysis of anatomical variance in longitudinal imaging. MICCAI, 13(Pt 1), 324–331.

    PubMed  Google Scholar 

  • Beg, M. F., Miller, M., Trouve, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2), 139–157.

    Article  Google Scholar 

  • Bhatia, K. K., Aljabar, P., Boardman, J. P., Srinivasan, L., Murgasova, M., Counsell, S. J., et al. (2007). Groupwise combined segmentation and registration for atlas construction. MICCAI, 10, 532–540.

    PubMed  Google Scholar 

  • Crum, W. R., Hartkens, T., & Hill, D. L. (2004). Non-rigid image registration: theory and practice. The British Journal of Radiology, 77(Spec No 2), S140–S153.

    Article  PubMed  Google Scholar 

  • Davis, B., Fletcher, P. T., Bullitt, E., & Joshi, S. (2007). Population shape regression from random design Data. In ICCV (pp. 1–7)

  • Davis, B. C., Fletcher, P. T., Bullitt, E., & Joshi, S. (2010). Population shape regression from random design data. International Journal of Computer Vision, 90(2), 255–266.

    Article  Google Scholar 

  • Fletcher, P. T., Venkatasubramanian, S., & Joshi, S. (2009). The geometric median on Riemannian manifolds with application to robust atlas estimation. Neuroimage, 45(1), S143–S152.

    Article  PubMed  Google Scholar 

  • Gerig, G., Davis, B., Lorenzen, P., Shun, X., Jomier, M., Piven, J., et al. Computational anatomy to assess longitudinal trajectory of brain growth. In 3D data processing, visualization, and transmission, Third International Symposium on, 2006 (pp. 1041–1047).

  • Guimond, A., Meunier, J., & Thirion, J. P. (2000). Average brain models: a convergence study. Computer Vision and Image Understanding, 77(2), 192–210.

    Article  Google Scholar 

  • Holland, D., Dale, A. M., & Neuroimaging, A. D. (2011). Nonlinear registration of longitudinal images and measurement of change in regions of interest. Medical Image Analysis, 15(4), 489–497.

    Article  PubMed  Google Scholar 

  • Jia, H. J., Wu, G. R., Wang, Q., & Shen, D. G. (2010). ABSORB: atlas building by self-organized registration and bundling. Neuroimage, 51(3), 1057–1070.

    Article  PubMed  Google Scholar 

  • Joshi, S. C., & Miller, M. I. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9(8), 1357–1370.

    Article  PubMed  CAS  Google Scholar 

  • Joshi, S., Davis, B., Jomier, M., & Gerig, G. (2004). Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage, 23, S151–S160.

    Article  PubMed  Google Scholar 

  • Learned-Miller, E. G. (2006). Data driven image models through continuous joint alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(2), 236–250.

    Article  PubMed  Google Scholar 

  • Liao, S., Jia, H., Wu, G., & Shen, D. (2012). A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences. Neuroimage, 59(2), 1275–1289.

    PubMed  Google Scholar 

  • Ma, J., Miller, M. I., Trouve, A., & Younes, L. (2008). Bayesian template estimation in computational anatomy. Neuroimage, 42(1), 252–261.

    Article  PubMed  Google Scholar 

  • Miller, M. I. (2004). Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms. Neuroimage, 23, S19–S33.

    Article  PubMed  Google Scholar 

  • Park, H., Bland, P. H., Hero, A. O., & Meyer, C. R. (2005). Least biased target selection in probabilistic atlas construction. In MICCAI (pp. 419–426).

  • Peyrat, J. M., Delingette, H., Sermesant, M., Xu, C. Y., & Ayache, N. (2010). Registration of 4D cardiac CT sequences under trajectory constraints with multichannel diffeomorphic demons. IEEE Transactions on Medical Imaging, 29(7), 1351–1368.

    Article  PubMed  Google Scholar 

  • Reuter, M., Schmansky, N. J., Rosas, H. D., & Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage.

  • Rohlfing, T. (2012). Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable. IEEE Transactions on Medical Imaging, 31(2), 153–163.

    Article  PubMed  Google Scholar 

  • Sabuncu, M. R., Balci, S. K., & Golland, P. (2008). Discovering modes of an image population through mixture modeling. MICCAI, 11, 381–389.

    PubMed  Google Scholar 

  • Sabuncu, M. R., Balci, S. K., Shenton, M. E., & Golland, P. (2009). Image-driven population analysis through mixture modeling. IEEE Transactions on Medical Imaging, 28(9), 1473–1487.

    Article  PubMed  Google Scholar 

  • Seghers, D., D’Agostino, E., Maes, F., Vandermeulen, D., & Suetens, P. (2004) .Construction of a brain template from MR images using state-of-the-art registration and segmentation techniques. In MICCAI (pp. 696–703).

  • Shattuck, D. W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K. L., et al. (2008). Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage, 39(3), 1064–1080.

    Article  PubMed  Google Scholar 

  • Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N. (2009). Diffeomorphic demons: efficient non-parametric image registration. Neuroimage, 45, S61–S72.

    Article  PubMed  Google Scholar 

  • Wang, Q., Chen, L., Yap, P.-T., Wu, G., & Shen, D. (2010). Groupwise registration based on hierarchical image clustering and atlas synthesis. Human Brain Mapping, 31(8), 1128–1140.

    PubMed  Google Scholar 

  • Wu, G. R., Jia, H. J., Wang, Q., & Shen, D. G. (2011). SharpMean: groupwise registration guided by sharp mean image and tree-based registration. Neuroimage, 56(4), 1968–1981.

    Article  PubMed  Google Scholar 

  • Yushkevich, P. A., Avants, B. B., Pluta, J., Das, S., Minkoff, D., Mechanic-Hamilton, D., et al. (2009). A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T. Neuroimage, 44(2), 385–398.

    Article  PubMed  Google Scholar 

  • Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by NIH grants EB006733, EB008374, EB009634 and MH088520.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, S., Wu, G. & Shen, D. A Statistical Framework for Inter-Group Image Registration. Neuroinform 10, 367–378 (2012). https://doi.org/10.1007/s12021-012-9156-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-012-9156-z

Keywords

Navigation