Neuroinformatics

, Volume 10, Issue 1, pp 19–32 | Cite as

XCEDE: An Extensible Schema for Biomedical Data

  • Syam Gadde
  • Nicole Aucoin
  • Jeffrey S. Grethe
  • David B. Keator
  • Daniel S. Marcus
  • Steve Pieper
  • FBIRN, MBIRN, BIRN-CC
Original Article

Abstract

The XCEDE (XML-based Clinical and Experimental Data Exchange) XML schema, developed by members of the BIRN (Biomedical Informatics Research Network), provides an extensive metadata hierarchy for storing, describing and documenting the data generated by scientific studies. Currently at version 2.0, the XCEDE schema serves as a specification for the exchange of scientific data between databases, analysis tools, and web services. It provides a structured metadata hierarchy, storing information relevant to various aspects of an experiment (project, subject, protocol, etc.). Each hierarchy level also provides for the storage of data provenance information allowing for a traceable record of processing and/or changes to the underlying data. The schema is extensible to support the needs of various data modalities and to express types of data not originally envisioned by the developers. The latest version of the XCEDE schema and manual are available from http://www.xcede.org/.

Keywords

XML Schema Database Biomedical technology 

References

  1. Blackburn, K., Lazzarini, A., et al. (1999). XSIL: Extensible Scientific Interchange Language. 7th International Conference of High-Performance Computing and Networking, Springer.Google Scholar
  2. Bray, T., Hollander, D., et al. (2006a). Namespaces in XML 1.0 (2nd edition), W3C.Google Scholar
  3. Bray, T., Paoli, J., et al. (2006b). Extensible Markup Language (XML) 1.0 (4th edition), W3C.Google Scholar
  4. Clark, J. (1999). XSL Transformations (XSLT), version 1.0, W3C.Google Scholar
  5. Clark, J., DeRose, S. (1999). XML Path Language (XPath), version 1.0, W3C.Google Scholar
  6. Clunie, D. (2000). DICOM structured reporting. Bangor: PixelMed.Google Scholar
  7. Dolin, R. H., Alschuler, L., et al. (2006). HL7 clinical document architecture, release 2. Journal of the American Medical Informatics Association, 13(1), 30–39.PubMedCrossRefGoogle Scholar
  8. Fenstermacher, D., Street, C., et al. (2005). The Cancer Biomedical Informatics Grid (caBIG™). Conf Proc IEEE Eng Med Biol Soc.Google Scholar
  9. Fischl, B., Salat, D. H., et al. (2002). Whole brain segmentation. Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.PubMedCrossRefGoogle Scholar
  10. Gering, D. T., Nabavi, A., et al. (1999). An integrated visualization system for surgical planning and guidance using image fusion and interventional imaging. Conf Med Image Comput Comput Assist Interv (MICCAI), Cambridge, England.Google Scholar
  11. Hors, A. L., Hégaret, P. L., et al. (2004). Document Object Model (DOM) level 3 core specification, version 1.0, W3C.Google Scholar
  12. ISO/IEC (2006). Document Schema Definition Languages (DSDL)—part 3: rule-based validation—Schematron. ISO/IEC19757-3:2006.Google Scholar
  13. Keator, D. B., Gadde, S., et al. (2006). A general XML schema and SPM toolbox for storage of neuro-imaging results and anatomical labels. Neuroinformatics, 4(2), 199–211.PubMedCrossRefGoogle Scholar
  14. Keator, D. B., Grethe, J. S., et al. (2008). A national human neuroimaging collaboratory enabled by the biomedical informatics research network. IEEE Transactions on Information Technology in Biomedicine, 12(2), 162–172.PubMedCrossRefGoogle Scholar
  15. Kunze, J., Baker, T. (2007). The Dublin core metadata element set. RFC 5013, from http://www.ietf.org/rfc/rfc5013.txt.
  16. Lohrey, J. M., Killeen, N. E. B., et al. (2009). An integrated object model and method framework for subject-centric e-Research applications. Frontiers in Neuroinformatics, 3, 19.PubMedCrossRefGoogle Scholar
  17. Marcus, D. S., Olsen, T. R., et al. (2007). The extensible neuroimaging archive toolkit (XNAT): an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics, 5, 11–34.PubMedGoogle Scholar
  18. Myers, J. D., Chappell, A. R., et al. (2003). Re-integrating the research record. Computing in Science and Engineering.Google Scholar
  19. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.PubMedCrossRefGoogle Scholar
  20. Ozyurt, I. B., Keator, D. B., et al. (2010). Federated web-accessible clinical data management within an extensible neuroimaging database. Neuroinformatics, 8(4), 231–249.PubMedCrossRefGoogle Scholar
  21. Rubin, D. L, Mongkolwat, P., et al. (2008). Medical imaging on the semantic web: Annotation and image markup. 2008 AAAI Spring Symposium Series, Semantic Scientific Knowledge Integration. Stanford University.Google Scholar
  22. Sufi, S., Mathews, B. (2004). CCLRC scientific metadata model: version 2. CCLRC Technical Report DL-TR-2004-001 Retrieved Feb 25, 2011, from http://epubs.cclrc.ac.uk/work-details?w=30324.
  23. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers.Google Scholar
  24. Thompson, H. S., Beech, D., et al. (2004). XML schema 1.0, W3C.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Syam Gadde
    • 1
  • Nicole Aucoin
    • 2
  • Jeffrey S. Grethe
    • 3
  • David B. Keator
    • 4
  • Daniel S. Marcus
    • 5
  • Steve Pieper
    • 6
  • FBIRN, MBIRN, BIRN-CC
    • 7
  1. 1.Brain Imaging and Analysis CenterDuke UniversityDurhamUSA
  2. 2.Surgical Planning LaboratoryBrigham and Women’s HospitalBostonUSA
  3. 3.Center for Research in Biological SystemsUniversity of California, San DiegoLa JollaUSA
  4. 4.University of CaliforniaIrvineUSA
  5. 5.Washington University School of MedicineSt. LouisUSA
  6. 6.Isomics, Inc.CambridgeUSA
  7. 7.Biomedical Informatics Research NetworkNIH-NCRRBethesdaUSA

Personalised recommendations