Skip to main content

Advertisement

Log in

Fully Parametric Sleep Staging Compatible with the Classical Criteria

  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

We present an open system for sleep staging, based explicitly on the criteria used in visual EEG analysis. Slow waves, theta and alpha waves, sleep spindles and K-complexes are parameterized in terms of time duration, amplitude, and frequency of each waveform by means of the matching pursuit algorithm. It allows the detection of these structures using mostly the criteria from visual EEG analysis. For example, within this framework for the first time we compute directly the relative duration of slow waves, which is a basic parameter in recognition of deep sleep stages. Performance of the system is evaluated on 20 polysomnographic recordings, scored by experienced encephalographers. Seven recordings were scored by more than one expert. Proposed system gives concordance with visual staging close to the inter-expert concordance. The algorithm is implemented in a user-friendly software system for display and analysis of polysomnographic recordings, freely available with complete source code from http://signalml.org/svarog.html.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderer, P., Gruber, G., Parapatics, S., et al. (2005). An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: Validation study of the Somnolyzer 24 × 7 utilizing the Siesta database. Neuropsychobiology, 51, 115–133.

    Article  PubMed  Google Scholar 

  • Baumgart-Schmitt, R., Herrmann, W., & Eilers, R. (1998). On the use of neural network techniques to analyze sleep EEG data. third communication: Robustification of the classificator by applying an algorithm obtained from 9 different networks. Neuropsychobiology, 37, 4958.

    Article  Google Scholar 

  • Caffarel, J., Gibson, J. G., Harrison, J., Griffiths, C., & Drinnan, M. (2006). Comparison of manual sleep staging with automated neural network-based analysis in clinical practice. Medical and Biological Engineering and Computing, 44(1–2), 105–110.

    Article  PubMed  Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.

    Article  Google Scholar 

  • Dietsch, G. (1932). Fourier analyse von elektroenzephalogrammen des menschent. Pflügers Archiv für die Gesamte Physiologie, 230.

  • Durka, P. J. (2004). Adaptive time-frequency parametrization of epileptic EEG spikes. Physical Review E, 69(051914).

    Article  Google Scholar 

  • Durka, P. J. (2007a). Matching pursuit. Scholarpedia, 20910.

  • Durka, P. J. (2007b). Matching pursuit and unification in EEG analysis. Engineering in medicine and biology. Artech House. ISBN 978-1-58053-304-1.

  • Durka, P. J., Malinowska, U., Szelenberger, W., Wakarow, A., & Blinowska, K. J. (2005). High resolution parametric description of slow wave sleep. Journal of Neuroscience Methods, 147(1), 15–21.

    Article  PubMed  Google Scholar 

  • Durka, P. J., Szelenberger, W., Blinowska, K., Androsiuk, W., & Myszka, M. (2002). Adaptive time-frequency parametrization in pharmaco EEG. Journal of Neuroscience Methods, 117, 65–71.

    Article  PubMed  Google Scholar 

  • Hasan, J., Hirvonen, K., Varri, A., Hakkinen, V., & Loula, P. (1993). Validation of computer analysed polygraphic patterns during drowsiness and sleep onset. Electroencephalography and Clinical Neurophysiology, 87, 117–127.

    Article  CAS  PubMed  Google Scholar 

  • Hashizume, Y., Kuwahara, H., Uchimura, N., Mukai, M., Shirakawa, S., Satomura, T., et al. (2001). Examination of accuracy of sleep stages by means of an automatic sleep analysis system, “Sleep Ukiha”. Psychiatry & Clinical Neurosciences, 55(3), 199–200.

    Article  CAS  Google Scholar 

  • Ibert, C., Ancoli-Israel, S., Chesson, A., & Quan, S. (2007). The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specification (1st ed.). Westchester: American Academy of Sleep Medicine.

    Google Scholar 

  • Kim, Y., Kurachi, M., Horita, M., Matsuura, K., & Kamikawa, Y. (1992). Agreement in visual scoring of sleep stages among laboratories in Japan. Journal of Sleep Research, 1, 58–60.

    Article  Google Scholar 

  • Kubat, M., Pfurtscheller, G., & Flotzinger, D. (1994). AI-based approach to automatic sleep classification. Biological Cybernetics, 70(5), 443–448.

    Article  CAS  PubMed  Google Scholar 

  • Malinowska, U., Durka, P. J., Blinowska, K., Szelenberger, W., & Wakarow, A. (2006). Micro- and macrostructure of sleep EEG. IEEE BME Magazine, 25, 26–31.

    Article  Google Scholar 

  • Mallat, S., & Zhang, Z. (1993). Matching pursuit with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41, 3397–3415.

    Article  Google Scholar 

  • Martin, W., Johnson, L., Viglione, S. S., et al. (1972). Pattern recognition of EEG-EOG as a technique for all-night sleep stage scoring. Electroencephalography and Clinical Neurophysiology, 32(4):17–427.

    Article  Google Scholar 

  • Monroe, L. (1967). Inter-rater reliability and the role of experience in scoring EEG sleep. Psychophysiol, 5, 376–384.

    Article  Google Scholar 

  • Park, H.-J., Oh, J.-S., Jeong, D.-U., & Park, K.-S. (2000). Automated sleep stage scoring using hybrid rule- and case-based reasoning. Computers and Biomedical Research, 33, 330–349.

    Article  CAS  PubMed  Google Scholar 

  • Penzel, T., Hirshkowitz, H., Harsh, J., Chervin, R., Butkov, N., Kryger, M., et al. (2007). Digital analysis and technical specifications. Journal of Clinical Sleep Medicine, 3(2), 109–120.

    PubMed  Google Scholar 

  • Pittman, S., MacDonald, M., RB, R. F., Malhotra, A., Todros, K., Levy, B., et al. (2004). Assessment of automated scoring of polysomnographic recordings in a population with suspected sleep-disordered breathing. Sleep, 27(7), 1394–1440.

    PubMed  Google Scholar 

  • Prinz, P., Larsen, L., Moe, K., Dulberg, E., & Vitiello, M. (1994). C stage, automated sleep scoring: Development and comparison with human sleep scoring for healthy older men and women. Sleep, 17(8), 717–7.

    Google Scholar 

  • Ray, S., Lee, W., Morgan, C. D., & Airth-Kindree, W. (1986). Computer sleep stage scoring—an expert system approach. International Journal of Bio-medical Computing, 19(1), 43–61.

    Article  CAS  PubMed  Google Scholar 

  • Rechtschaffen, A., & Kales, A., Eds. (1968). A manual of standardized terminology, techniques and scoring system for sleep stages in human subjects. Number 204 in National Institutes of Health Publications. Washington DC: US Government Printing Office.

    Google Scholar 

  • Schaltenbrand, N., Lengelle, R., Toussaint, M., Luthringer, R., Carelli, G., Jacqmin, A., et al. (1996). Sleep stage scoring using the neural network model: Comparison between visual and automatic analysis in normal subjects and patients. Sleep, 9(1), 26–35.

    Google Scholar 

  • Smith, J., & Karacan, I. (1971). EEG sleep stage scoring by an automatic hybrid system. Electroencephalography and Clinical Neurophysiology, 31(3), 231–237.

    Article  CAS  PubMed  Google Scholar 

  • Stanus, E., Lacroix, B., Kerkhofs, M., & Mendlewicz, J. (1987). Automated sleep scoring: a comparative reliability study of two algorithms. Electroencephalography and Clinical Neurophysiology, 66(4), 448–456.

    Article  CAS  PubMed  Google Scholar 

  • Virkkala, J., Hasan, J., Värri, A., Himanen, S.-L., & Müller, K. (2007). Automatic sleep stage classification using two-channel electro-oculography. Journal of Neuroscience Methods, 166, 109–115.

    Article  PubMed  Google Scholar 

  • Żygierewicz, J., Blinowska, K. J., Durka, P. J., Szelenberger, W., Niemcewicz, S., & Androsiuk, W. (1999). High resolution study of sleep spindles. Clinical Neurophysiology, 110(12), 2136–2147.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Polish funds for science 2006-2009, grant 3T11E02330 and NN518262933.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Malinowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malinowska, U., Klekowicz, H., Wakarow, A. et al. Fully Parametric Sleep Staging Compatible with the Classical Criteria. Neuroinform 7, 245–253 (2009). https://doi.org/10.1007/s12021-009-9059-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-009-9059-9

Keywords

Navigation