Skip to main content

Advertisement

Log in

Visualizing Dynamical Neural Assemblies with a Fuzzy Synchronization Clustering Analysis

  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Phase synchrony has been proposed as a possible communication mechanism between cerebral regions. The participation index method (PIM) may be used to investigate integrating structures within an oscillatory network, based on the eigenvalue decomposition of matrix of bivariate synchronization indices. However, eigenvector orthogonality between clusters may result in categorization difficulties for hub oscillators and pseudoclustering phenomenon. Here, we propose a method of fuzzy synchronization clustering analysis (FSCA) to avoid the constraint of orthogonality by combining the fuzzy c-means algorithm with the phase-locking value. Following mathematical derivation, we cross-validated the FSCA and the PIM using the same multichannel phase time series of event-related EEG from a subject performing a working memory task. Both clustering methods produced consistent findings for the qualitatively salient configuration of the original network—illustrated here by a visualization technique. In contrast to PIM, use of common virtual oscillatory centroids enabled the FSCA to reveal multiple dynamical neural assemblies as well as the unitary phase information within each assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allefeld, C. & Bialonski, S. (2007). Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains. Physical Review E, 76, 066207.

    Article  Google Scholar 

  • Allefeld, C. & Kurths, J. (2004). An approach to multivariate phase synchronization analysis and its application to event-related potentials. International Journal of Bifurcation and Chaos, 14, 417–426.

    Article  Google Scholar 

  • Allefeld, C., Müller, M., & Kurths, J. (2007). Eigenvalue decomposition as a generalized synchronization clustering analysis. International Journal of Bifurcation and Chaos, 17, 3493–3497.

    Article  Google Scholar 

  • Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. New York: Plenum.

    Google Scholar 

  • Bialonski, S. & Lehnertz, K. (2006). Identifying phase synchronization clusters in spatially extended dynamical systems. Physical Review E, 74, 051909.

    Article  Google Scholar 

  • Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9, 474–480.

    Article  PubMed  Google Scholar 

  • Guevara, R., Velazquez, J. L., Nenadovic, V., Wennberg, R., Senjanovic, G., & Dominguez, L. G. (2005). Phase synchronization measurements using electroencephalographic recordings: what can we really say about neuronal synchrony? Neuroinformatics, 3, 301–314.

    Article  PubMed  Google Scholar 

  • Hjorth, B. (1975). An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalography and Clinical Neurophysiology, 39, 526–30.

    Article  CAS  PubMed  Google Scholar 

  • Ito, J., Nikolaev, A. R., & van Leeuwen, C. (2005). Spatial and temporal structure of phase synchronization of spontaneous alpha EEG activity. Biological Cybernetics, 92, 54–60.

    Article  PubMed  Google Scholar 

  • Kahana, M. J., Seelig, D., & Madsen, J. R. (2001). Theta returns. Current Opinion in Neurobiology, 11, 739–744.

    Article  CAS  PubMed  Google Scholar 

  • Lachaux, J. P., Rodriguez, E., Martinerie, J., & Varela, F. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8, 194–208.

    Article  CAS  PubMed  Google Scholar 

  • Lachaux, J. P., Rodriguez, E., Le Van Quyen, M., Lutz, A., Martinerie, J., & Varela, F. (2000). Studying single-trials of phase-synchronous activity in the brain. International Journal of Bifurcation and Chaos, 10, 2429–2439.

    Google Scholar 

  • Lagerlund, T. D., Sharbrough, F. W., Busacker, N. E., & Cicora, K. M. (1995). Interelectrode coherences from nearest-neighbor and spherical harmonic expansion computation of laplacian of scalp potential. Electroencephalography and Clinical Neurophysiology, 95, 178–188.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Cui, D., Jiruska, P., Fox, J. E., Yao, X., & Jefferys, J. G. R. (2007). Synchronization measurement of multiple neuronal populations. Journal of Neurophysiology, 98, 3341–3348.

    Article  PubMed  Google Scholar 

  • Pal, N. R. & Bezdek, J. C. (1995). On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy System, 3, 370–379.

    Article  Google Scholar 

  • Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., & Varela, F. (1999). Perception’s shadow: long-distance synchronization of human brain activity. Nature, 397, 430–433.

    Article  CAS  PubMed  Google Scholar 

  • Rosenblum, M. G., Pikovsky, A. S., & Kurths, J. (1996). Phase synchronization of chaotic oscillators. Physical Review Letters, 76, 1804–1807.

    Article  CAS  PubMed  Google Scholar 

  • Sauseng, P., Klimesch, W., Gruber, W. R., & Birbaumerb, N. (2008). Cross-frequency phase synchronization: a brain mechanism of memory matching and attention. NeuroImage, 40, 308–317.

    Article  PubMed  Google Scholar 

  • Schiff, S. J. (2005). Dangerous phase. Neuroinformatics, 3, 315–317.

    Article  PubMed  Google Scholar 

  • Schindler, K., Leung, H., Elger, C. E., & Lehnertz, K. (2007). Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain, 130, 65–77.

    Article  PubMed  Google Scholar 

  • Tallon-Baudry, C. & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3, 151–162.

    Article  PubMed  Google Scholar 

  • Tass, P., Rosenblum, M. G., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J., et al. (1998). Detection of n:m phase locking from noisy data: application to magnetoencephalography. Physical Review Letters, 81, 3291–3294.

    Article  CAS  Google Scholar 

  • Theodoridis, S. & Koutroumbas, K. (2006). Pattern recognition (3rd ed.). Oxford: Elsevier Inc.

    Google Scholar 

  • Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2, 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, S., Wang, C. M., Wei, J. H., & Wu, S. L. (1999). Fuzzy segmentation spatiotemporal patterns of cognitive potential into microstates. Brain Topography, 12, 61–67.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, S., Wei, J. H., Luo, Y. F., & Yang, W. J. (1998). New methods for three dimensional mapping of brain waves. Brain Topography, 11, 103–110.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (contract 30270468) to Dr. Shu Zhou. We are grateful to the anonymous reviewers for the valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Zhou.

Additional information

Information Sharing Statement

The FSCA program code in C language is freely available. Please contact the first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, S., Wu, Y. & Dos Santos, C.C. Visualizing Dynamical Neural Assemblies with a Fuzzy Synchronization Clustering Analysis. Neuroinform 7, 233–244 (2009). https://doi.org/10.1007/s12021-009-9056-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-009-9056-z

Keywords

Navigation