Achard, P., & Schutter, E. D. (2006). Complex parameter landscape for a complex neuron model. PLoS Computers in Biology, 2(7), e94. doi:10.1371/journal.pcbi.0020094.
Article
Google Scholar
Baxter, S. M., Day, S. W., Fetrow, J. S., & Reisinger, S. J. (2006). Scientific software development is not an oxymoron. PLoS Computers in Biology, 2, 975–978.
CAS
Google Scholar
Bean, B. P. (2007). The action potential in mammalian central neurons. Nature Reviews. Neuroscience, 8(6), 451–465. doi:10.1038/nrn2148.
PubMed
Article
CAS
Google Scholar
Bjaalie, J. (2008). Understanding the brain through neuroinformatics. Front Neuroscience, 2(1), 19–21. doi:10.3389/neuro.01.022.2008.
Article
Google Scholar
Bjaalie, J. G., & Grillner, S. (2007). Global neuroinformatics: The international neuroinformatics coordinating facility. Journal of Neuroscience, 27(14), 3613–3615. doi:10.1523/jneurosci.0558-07.2007.
PubMed
Article
CAS
Google Scholar
Bokil, H., Tchernichovski, O., & Mitra, P. P. (2006). Dynamic phenotypes: Time series analysis techniques for characterizing neuronal and behavioral dynamics. Neuroinformatics, 4(1), 119–128.
PubMed
Article
Google Scholar
Bower, J. M., & Beeman, D. (1998). The book of GENESIS (2nd ed.). New York: Springer.
Google Scholar
Brown, E. N., Kass, R. E., & Mitra, P. P. (2004). Multiple neural spike train data analysis: State-of-the-art and future challenges. Nature Neuroscience, 7(5), 456–461.
PubMed
Article
CAS
Google Scholar
Calin-Jageman, R. J., Tunstall, M. J., Mensh, B. D., Katz, P. S., & Frost, W. N. (2007). Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. Journal of Neurophysiology, 98(4), 2382–2398. doi:10.1152/jn.00572.2007.
PubMed
Article
Google Scholar
Cannon, R. C., Gewaltig, M. O., Gleeson, P., Bhalla, U. S., Cornelis, H., Hines, M. L., et al. (2007) Interoperability of neuroscience modeling software: Current status and future directions. Neuroinformatics, 5(2), 127–138. doi:10.1007/s12021-007-0004-5.
PubMed
Article
Google Scholar
Carnevale, N., & Hines, M. (2006). The NEURON book. Cambridge: Cambridge University Press.
Google Scholar
Chamberlin, D. D., & Boyce, R. F. (1974). SEQUEL: A structured English query language. In International conference on management of data, proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on data description, access and control (pp. 249–264). Ann Arbor, Michigan.
Codd, E. (1970). A relational model of data for large shared data banks. Communications of the ACM, 13(6), 377–387.
Article
Google Scholar
Cui, J., Xu, L., Bressler, S. L., Ding, M., & Liang, H. (2008). BSMART: A MATLAB/C toolbox for analysis of multichannel neural time series. Neural Networks, 21(8, Sp. Iss. SI), 1094–1104. doi:10.1016/j.neunet.2008.05.007.
PubMed
Article
Google Scholar
Eaton, J. W. (2002). GNU Octave. A numerical engineering software package. http://www.che.wisc.edu/octave.
Elmasri, R., & Navathe, S. B. (1994). Fundamentals of database systems (2nd ed.). Reading: Addison-Wesley.
Google Scholar
Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In Genetic algorithms: Proceedings of the fifth international conference (pp. 416–423). San Francisco: Morgan Kaufmann.
Google Scholar
Gardner, D., Toga, A., Ascoli, G., Beatty, J., Brinkley, J., Dale, A., et al. (2003). Towards effective and rewarding data sharing. Neuroinformatics, 1(3), 289–295.
PubMed
Article
Google Scholar
Gardner, D., Akil, H., Ascoli, G. A., Bowden, D. M., Bug, W., Donohue, D. E., et al. (2008). The neuroscience information framework: A data and knowledge environment for neuroscience. Neuroinformatics, 6(3), 149–160. doi:10.1007/s12021-008-9024-z.
PubMed
Article
Google Scholar
Gleeson, P., Steuber, V., & Silver, R. A. (2007). neuroConstruct: A tool for modeling networks of neurons in 3D space. Neuron, 54(2), 219–235. doi:10.1016/j.neuron.2007.03.025.
PubMed
Article
CAS
Google Scholar
Günay, C. (2007). Plotting and analysis for neural database-oriented research applications (PANDORA) toolbox. http://userwww.service.emory.edu/~cgunay/pandora.
Günay, C. (2008a). PANDORA neural analysis toolbox. In Intenational Neuroinformatics coordinating facility (INCF) software center. http://software.incf.org/software/44/view/PANDORA.
Günay, C. (2008b). PANDORA neural analysis toolbox. SimToolDB. http://senselab.med.yale.edu/SimToolDB.
Günay, C., Edgerton, J. R., & Jaeger, D. (2008a). Channel density distributions explain spiking variability in the globus pallidus: A combined physiology and computer simulation database approach. Journal of Neuroscience, 28(30), 7476–7491. doi:10.1523/jneurosci.4198-07.2008.
PubMed
Article
Google Scholar
Günay, C., Hooper, R. M., Hammett, K. R., & Prinz, A. A. (2008b). Calcium sensor properties for activity-dependent homeostatic regulation of pyloric network rhythms in the lobster stomatogastric ganglion. BMC Neuroscience, 9(Suppl 1), P42.
Article
Google Scholar
Günay, C., Smolinski, T., Lytton, W., et al. (2008c). Computational intelligence in electrophysiology: Trends and open problems. In T. Smolinski, M. Milanova, & A. E. Hassanien (Eds.), Applications of computational intelligence in biology: Current trends and open problems (chap. XIV, pp. 325–359). New York: Springer.
Google Scholar
Herz, A. V., Meier, R., Nawrot, M. P., Schiegel, W., & Zito, T. (2008). G-Node: An integrated tool-sharing platform to support cellular and systems neurophysiology in the age of global neuroinformatics. Neural Networks, 21(8), 1070–1075. doi:10.1016/j.neunet.2008.05.011 (Special Issue on Neuroinformatics).
PubMed
Article
Google Scholar
Hines, M., Morse, T., Migliore, M., Carnevale, N., & Shepherd, G. (2004). ModelDB: A database to support computational neuroscience. Journal of Computational Neuroscience, 17(1), 7–11. http://senselab.med.yale.edu/ModelDB.
PubMed
Article
Google Scholar
Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.
PubMed
CAS
Google Scholar
Huys, Q. J. M., Ahrens, M. B., & Paninski, L. (2006). Efficient estimation of detailed single-neuron models. Journal of Neurophysiology, 96(2), 872–890. doi:10.1152/jn.00079.2006.
PubMed
Article
Google Scholar
Johnson, D. H., & Sinanović, S. (2001). Symmetrizing the Kullback-Leibler distance. Tech. Rep., Electrical & Computer Engineering Department, MS380 Rice University Houston, Texas 77005-1892. http://www-dsp.rice.edu/~dhj/resistor.pdf.
Kullback, S., & Leibler, R. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79–86.
Article
Google Scholar
Lidierth, M. (2009). sigTOOL: A MATLAB-based environment for sharing laboratory-developed software to analyze biological signals. Journal of Neuroscience Methods. doi:10.1016/j.jneumeth.2008.11.004.
PubMed
Google Scholar
Liu, Z., Golowasch, J., Marder, E., & Abbott, L. F. (1998). A model neuron with activity-dependent conductances regulated by multiple calcium sensors. Journal of Neuroscience, 18(7), 309–320.
Google Scholar
Lytton, W. W. (2006). Neural query system—data-mining from within the neuron simulator. Neuroinformatics, 4(2), 163–175.
PubMed
Article
Google Scholar
Meier, R., Boven, K., Aertsen, A., & Egert, U. (2007). FIND—finding information in neural data, An open-source analysis toolbox for multiple-neuron recordings and network simulations. In Proc. 7th German Neurosci Meeting (p. 1212).
Meier, R., Egert, U., Aertsen, A., & Nawrot, M. P. (2008). FIND—A unified framework for neural data analysis. Neural Networks, 21(8), 1085–1093. doi:10.1016/j.neunet.2008.06.019 (Special Issue on Neuroinformatics).
PubMed
Article
Google Scholar
Morse, T. (2007). Model sharing in computational neuroscience. Scholarpedia, 2(4), 3036. http://www.scholarpedia.org/article/Model_sharing_in_computational_neuroscience.
Google Scholar
Nicolelis, M., Dimitrov, D., Carmena, J., Crist, R., Lehew, G., Kralik, J., et al. (2003). Chronic, multisite, multielectrode recordings in macaque monkeys. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 11041–11046.
PubMed
Article
CAS
Google Scholar
Pittendrigh, S., & Jacobs G. (2003). Neurosys: A semistructured laboratory database. Neuroinformatics, 1(2), 167–176.
PubMed
Article
Google Scholar
Prinz, A. A., Billimoria, C. P., & Marder, E. (2003). Alternative to hand-tuning conductance-based models: Construction and analysis of databases of model neurons. Journal of Neurophysiology, 90, 3998–4015.
PubMed
Article
Google Scholar
Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7(12), 1345–1352.
PubMed
Article
CAS
Google Scholar
Sekerli, M., Del Negro, C., Lee, R., & Butera, R. (2004). Estimating action potential thresholds from neuronal time-series: New metrics and evaluation of methodologies. IEEE Transactions on Biomedical Engineering, 51(9), 1665–1672. doi:10.1109/TBME.2004.827531.
PubMed
Article
Google Scholar
Shepherd, G., Mirsky, J., Healy, M., et al. (1998). The human brain project: Neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data. TINS, 21(11).
Sinanović, S., & Johnson, D. H. (2007). Toward a theory of information processing. Signal Processing, 87, 1326–1344.
Article
Google Scholar
Smolinski, T. G., Prinz, A. A., & Zurada, J. M. (2008). Hybridization of rough sets and multi-objective evolutionary algorithms for classificatory signal decomposition. In A. E. Hassanien, Z. Suraj, D. Ślȩzak, & P. Lingras (Eds.), Rough computing: Theories, technologies, and applications (chap. X, pp. 204–227). Hershey: Information Science Reference.
Google Scholar
Taylor, A. L., Hickey, T. J., Prinz, A. A., & Marder, E. (2006). Structure and visualization of high-dimensional conductance spaces. Journal of Neurophysiology, 96, 891–905.
PubMed
Article
Google Scholar
Van Geit, W., Achard, P., & Schutter, E. D. (2007). Neurofitter: A parameter tuning package for a wide range of electrophysiological neuron models. Frontiers in Neuroinformatics, 1, 1.
Van Geit, W., De Schutter, E., & Achard, P. (2008). Automated neuron model optimization techniques: A review. Biological Cybernetics, 99(4–5), 241–251. doi:10.1007/s00422-008-0257-6.
PubMed
Article
Google Scholar
Vanier, M. C., & Bower, J. M. (1999). A comparative survey of automated parameter-search methods for compartmental neural models. Journal of Computational Neuroscience, 7, 149–171.
PubMed
Article
CAS
Google Scholar
Weaver, C., & Wearne, S. (2006). The role of action potential shape and parameter constraints in optimization of compartment models. Neurocomputing, 69(10–12), 1053–1057. doi:10.1016/j.neucom.2005.12.044 (14th Annual Computational Neuroscience Meeting (CNS 05), Madison, WI, 17–21 July, 2005).
Article
Google Scholar
Wood, R., Gurney, K., & Wilson, C. (2004). A novel parameter optimisation technique for compartmental models applied to a model of a striatal medium spiny neuron. Neurocomputing, 58, 1109–1116. doi:10.1016/j.neucom.2004.01.174.
Article
Google Scholar