Skip to main content

Advertisement

Log in

Clinical and therapeutic implications of cavernous sinus invasion in pituitary adenomas

  • Mini Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Invasion of the cavernous sinus by pituitary adenomas impedes complete surgical resection, compromises biochemical remission, and increases the risk of further tumor recurrence. Accurate preoperative MRI-based diagnosis or intraoperative direct inspection of cavernous sinus invasion are essential for optimal surgical planning and for tailoring postoperative therapeutic strategies, depending on whether a total resection has been achieved, or tumoral tissue has been left in surgically inaccessible locations. The molecular mechanisms underlying the invasive behavior of pituitary adenomas remain poorly understood, hindering the development of targeted therapies. Some studies have identified genes overexpressed in pituitary adenomas invading the cavernous sinus, offering insights into the acquisition of invasive behavior. Their main limitation however lies in comparing purely intrasellar specimens obtained from invasive and non-invasive adenomas. Further, precise anatomical knowledge of the medial wall of the cavernous sinus is crucial for grasping the mechanisms of invasion. Recently, alongside the standard intrasellar surgery, extended endoscopic intracavernous surgical procedures with systematic selective resection of the medial wall of the cavernous sinus have shown promising results for invasive secreting pituitary adenomas. The first- and second-generation somatostatin agonist ligands and cabergoline are used with variable efficacy to control secretory activity and/or growth of intracavernous remnants. Tumor regrowth usually requires surgical reintervention, sometimes combined with radiotherapy or radiosurgery which is applied despite their benign nature. Unraveling the molecular pathways driving invasive behavior of pituitary adenomas and their tropism to the cavernous sinuses is the key for developing efficient innovative treatment modalities that could reduce the need for repeated surgery or radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A.S.G. Micko, A. Wöhrer, S. Wolfsberger, E. Knosp, Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI-based classification. J. Neurosurg. 122(4), 803–811 (2015). https://doi.org/10.3171/2014.12.JNS141083

    Article  PubMed  Google Scholar 

  2. K. Juraschka, O.H. Khan, B.L. Godoy et al., Endoscopic endonasal transsphenoidal approach to large and giant pituitary adenomas: institutional experience and predictors of extent of resection. J. Neurosurg. 121(1), 75–83 (2014). https://doi.org/10.3171/2014.3.JNS131679

    Article  PubMed  Google Scholar 

  3. S. Brochier, F. Galland, M. Kujas et al., Factors predicting relapse of nonfunctioning pituitary macroadenomas after neurosurgery: a study of 142 patients. Eur. J. Endocrinol. 163(2), 193–200 (2010). https://doi.org/10.1530/EJE-10-0255

    Article  CAS  PubMed  Google Scholar 

  4. G. Raverot, E. Dantony, J. Beauvy et al., Risk of recurrence in pituitary neuroendocrine tumors: a prospective study using a five-tiered classification. J. Clin. Endocrinol. Metab. 102(9), 3368–3374 (2017). https://doi.org/10.1210/jc.2017-00773

    Article  PubMed  Google Scholar 

  5. M. Rutkowski, G. Zada, Management of pituitary adenomas invading the cavernous sinus. Neurosurg. Clin. 30(4), 445–455 (2019). https://doi.org/10.1016/j.nec.2019.05.005

    Article  Google Scholar 

  6. M. Araujo-Castro, A. Acitores Cancela, C. Vior, E. Pascual-Corrales, V. Rodríguez Berrocal, Radiological Knosp, revised-Knosp, and Hardy–Wilson classifications for the prediction of surgical outcomes in the endoscopic endonasal surgery of pituitary adenomas: study of 228 cases. Front. Oncol. 11 (2022). https://www.frontiersin.org/articles/10.3389/fonc.2021.807040

  7. E. Knosp, E. Steiner, K. Kitz, C. Matula, Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33(4), 610–617 (1993). https://doi.org/10.1227/00006123-199310000-00008.

    Article  CAS  PubMed  Google Scholar 

  8. H. Nishioka, N. Fukuhara, K. Horiguchi, S. Yamada, Aggressive transsphenoidal resection of tumors invading the cavernous sinus in patients with acromegaly: predictive factors, strategies, and outcomes. J. Neurosurg. 121(3), 505–510 (2014). https://doi.org/10.3171/2014.3.JNS132214

    Article  PubMed  Google Scholar 

  9. A. Micko, J. Oberndorfer, W.J. Weninger et al., Challenging Knosp high-grade pituitary adenomas. J. Neurosurg. 132(6), 1739–1746 (2019). https://doi.org/10.3171/2019.3.JNS19367

    Article  PubMed  Google Scholar 

  10. F. Eisenhut, M.A. Schmidt, M. Buchfelder, A. Doerfler, S.M. Schlaffer, Improved detection of cavernous sinus invasion of pituitary macroadenomas with ultra-high-field 7 T MRI. Life13(1), 49 (2022). https://doi.org/10.3390/life13010049

    Article  PubMed  PubMed Central  Google Scholar 

  11. H.Q. Truong, S. Lieber, E. Najera, J.T. Alves-Belo, P.A. Gardner, J.C. Fernandez-Miranda, The medial wall of the cavernous sinus. Part 1: surgical anatomy, ligaments, and surgical technique for its mobilization and/or resection. J. Neurosurg. 131(1), 122–130 (2018). https://doi.org/10.3171/2018.3.JNS18596

    Article  PubMed  Google Scholar 

  12. S. Cohen-Cohen, P.A. Gardner, J.T. Alves-Belo et al., The medial wall of the cavernous sinus. Part 2: selective medial wall resection in 50 pituitary adenoma patients. J. Neurosurg. 131(1), 131–140 (2018). https://doi.org/10.3171/2018.5.JNS18595

    Article  PubMed  Google Scholar 

  13. A. Mohyeldin, L.J. Katznelson, A.R. Hoffman et al., Prospective intraoperative and histologic evaluation of cavernous sinus medial wall invasion by pituitary adenomas and its implications for acromegaly remission outcomes. Sci. Rep. 12(1), 9919 (2022). https://doi.org/10.1038/s41598-022-12980-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Dhandapani, H. Singh, H.M. Negm, S. Cohen, V.K. Anand, T.H. Schwartz, Cavernous sinus invasion in pituitary adenomas: systematic review and pooled data meta-analysis of radiologic criteria and comparison of endoscopic and microscopic surgery. World Neurosurg. 96, 36–46 (2016). https://doi.org/10.1016/j.wneu.2016.08.088

    Article  PubMed  Google Scholar 

  15. G.F. Woodworth, K.S. Patel, B. Shin et al., Surgical outcomes using a medial-to-lateral endonasal endoscopic approach to pituitary adenomas invading the cavernous sinus. J. Neurosurg. 120(5), 1086–1094 (2014). https://doi.org/10.3171/2014.1.JNS131228

    Article  PubMed  PubMed Central  Google Scholar 

  16. A. Paluzzi, J.C. Fernandez-Miranda, S. Tonya Stefko, S. Challinor, C.H. Snyderman, P.A. Gardner, Endoscopic endonasal approach for pituitary adenomas: a series of 555 patients. Pituitary 17(4), 307–319 (2014). https://doi.org/10.1007/s11102-013-0502-4

    Article  PubMed  Google Scholar 

  17. C.P. Hofstetter, M.J. Nanaszko, L.L. Mubita, J. Tsiouris, V.K. Anand, T.H. Schwartz, Volumetric classification of pituitary macroadenomas predicts outcome and morbidity following endoscopic endonasal transsphenoidal surgery. Pituitary 15(3), 450–463 (2012). https://doi.org/10.1007/s11102-011-0350-z

    Article  PubMed  Google Scholar 

  18. M. Messerer, J.C. De Battista, G. Raverot et al., Evidence of improved surgical outcome following endoscopy for nonfunctioning pituitary adenoma removal. Neurosurg. Focus 30(4), E11 (2011). https://doi.org/10.3171/2011.1.FOCUS10308

    Article  PubMed  Google Scholar 

  19. K. Asmaro, M. Zhang, A.J. Rodrigues et al., Cytodifferentiation of pituitary tumors influences pathogenesis and cavernous sinus invasion. J. Neurosurg. 1, 1–9 (2023). https://doi.org/10.3171/2023.3.JNS221949

    Article  Google Scholar 

  20. R. Fahlbusch, M. Buchfelder, Current management of invasive pituitary adenomas. Contemp. Neurosurg. 11(17), 1 (1989)

    Article  Google Scholar 

  21. H.Y. Liu, W.J. Gu, C.Z. Wang, X.J. Ji, Y.M. Mu, Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas. Medicine 95(24), e3904 (2016). https://doi.org/10.1097/MD.0000000000003904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J. Gong, Y. Zhao, R. Abdel-Fattah et al., Matrix metalloproteinase-9, a potential biological marker in invasive pituitary adenomas. Pituitary 11(1), 37–48 (2008). https://doi.org/10.1007/s11102-007-0066-2

    Article  CAS  PubMed  Google Scholar 

  23. H. Kawamoto, T. Uozumi, K. Kawamoto, K. Arita, T. Yano, T. Hirohata, Type IV collagenase activity and cavernous sinus invasion in human pituitary adenomas. Acta Neurochir. 138(4), 390–395 (1996). https://doi.org/10.1007/BF01420300

    Article  CAS  PubMed  Google Scholar 

  24. M.D. Ilie, A. Vasiljevic, P. Bertolino, G. Raverot, Biological and therapeutic implications of the tumor microenvironment in pituitary adenomas. Endocr. Rev. 44(2), 297–311 (2023). https://doi.org/10.1210/endrev/bnac024

    Article  PubMed  Google Scholar 

  25. M.D. Ilie, A. Vasiljevic, G. Raverot, P. Bertolino, The microenvironment of pituitary tumors—biological and therapeutic implications. Cancers 11(10), 1605 (2019). https://doi.org/10.3390/cancers11101605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. U.J. Knappe, C. Hagel, B.W. Lisboa, W. Wilczak, D.K. Lüdecke, W. Saeger, Expression of serine proteases and metalloproteinases in human pituitary adenomas and anterior pituitary lobe tissue. Acta Neuropathol. 106(5), 471–478 (2003). https://doi.org/10.1007/s00401-003-0747-5

    Article  CAS  PubMed  Google Scholar 

  27. F. Galland, L. Lacroix, P. Saulnier et al., Differential gene expression profiles of invasive and non-invasive non-functioning pituitary adenomas based on microarray analysis. Endocr. Relat. Cancer 17(2), 361–371 (2010). https://doi.org/10.1677/ERC-10-0018

    Article  CAS  PubMed  Google Scholar 

  28. M. Sato, R. Tamura, H. Tamura et al., Analysis of tumor angiogenesis and immune microenvironment in non-functional pituitary endocrine tumors. J. Clin. Med. 8(5), 695 (2019). https://doi.org/10.3390/jcm8050695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. C. Shi, Z. Ye, J. Han et al., BRD4 as a therapeutic target for nonfunctioning and growth hormone pituitary adenoma. Neuro Oncol. 22(8), 1114–1125 (2020). https://doi.org/10.1093/neuonc/noaa084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M. Hage, S. Viengchareun, E. Brunet et al., Genomic alterations and complex subclonal architecture in sporadic GH-secreting pituitary adenomas. J. Clin. Endocrinol. Metab. 103(5), 1929–1939 (2018). https://doi.org/10.1210/jc.2017-02287

    Article  PubMed  Google Scholar 

  31. R.A. Burrell, N. McGranahan, J. Bartek, C. Swanton, The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501(7467), 338–345 (2013). https://doi.org/10.1038/nature12625

    Article  CAS  PubMed  Google Scholar 

  32. G. Raverot, M.D. Ilie, H. Lasolle et al., Aggressive pituitary tumours and pituitary carcinomas. Nat. Rev. Endocrinol. 17(11), 671–684 (2021). https://doi.org/10.1038/s41574-021-00550-w

    Article  PubMed  Google Scholar 

  33. P. Marques, S. Barry, E. Carlsen et al., The role of the tumour microenvironment in the angiogenesis of pituitary tumours. Endocrine 70(3) (2020). https://doi.org/10.1007/s12020-020-02478-z

  34. P. Marques, S. Barry, E. Carlsen et al., Chemokines modulate the tumour microenvironment in pituitary neuroendocrine tumours. Acta Neuropathol. Commun. 7(1), 172 (2019). https://doi.org/10.1186/s40478-019-0830-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Barry, E. Carlsen, P. Marques et al., Tumor microenvironment defines the invasive phenotype of AIP-mutation-positive pituitary tumors. Oncogene 38(27), 5381–5395 (2019). https://doi.org/10.1038/s41388-019-0779-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M.D. Ilie, H. Lasolle, G. Raverot, Emerging and novel treatments for pituitary tumors. J. Clin. Med. 8(8), 1107 (2019). https://doi.org/10.3390/jcm8081107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. K. Osterhage, R. Rotermund, M. Droste et al., Bevacizumab in aggressive pituitary adenomas – experience with 3 patients. Exp. Clin. Endocrinol. Diabetes 129(3), 178–185 (2021). https://doi.org/10.1055/a-1260-3975

    Article  CAS  PubMed  Google Scholar 

  38. O.M. Alshaikh, S.L. Asa, O. Mete, S. Ezzat, An institutional experience of tumor progression to pituitary carcinoma in a 15-year cohort of 1055 consecutive pituitary neuroendocrine tumors. Endocr. Pathol. 30(2), 118–127 (2019). https://doi.org/10.1007/s12022-019-9568-5

    Article  PubMed  Google Scholar 

  39. M.D. Ilie, A. Vasiljevic, E. Jouanneau, G. Raverot, Immunotherapy in aggressive pituitary tumors and carcinomas: a systematic review. Endocr. Relat. Cancer 29(7), 415–426 (2022). https://doi.org/10.1530/ERC-22-0037

    Article  CAS  PubMed  Google Scholar 

  40. M.D. Ilie, C. Villa, T. Cuny et al., Real-life efficacy and predictors of response to immunotherapy in pituitary tumors: a cohort study. Eur. J. Endocrinol. 187(5), 685–696 (2022). https://doi.org/10.1530/EJE-22-0647

    Article  CAS  PubMed  Google Scholar 

  41. S. Yokoyama, H. Hirano, K. Moroki, M. Goto, S. Imamura, J.I. Kuratsu, Are nonfunctioning pituitary adenomas extending into the cavernous sinus aggressive and/or invasive? Neurosurgery 49(4), 857–862 (2001). https://doi.org/10.1097/00006123-200110000-00014.

    Article  CAS  PubMed  Google Scholar 

  42. A. Yasuda, A. Campero, C. Martins, A.L.J. Rhoton, G.C. Ribas, The medial wall of the cavernous sinus: microsurgical anatomy. Neurosurgery 55(1), 179 (2004). https://doi.org/10.1227/01.NEU.0000126953.59406.77

    Article  PubMed  Google Scholar 

  43. M.B. Gonçalves, J.G. de Oliveira, H.A. Williams, R.M.P. Alvarenga, J.A. Landeiro, Cavernous sinus medial wall: dural or fibrous layer? Systematic review of the literature. Neurosurg. Rev. 35(2), 147–154 (2012). https://doi.org/10.1007/s10143-011-0360-3

    Article  PubMed  Google Scholar 

  44. J.P. Cottier, C. Destrieux, L. Brunereau, et al., Cavernous sinus invasion by pituitary adenoma: MR imaging. Radiology (2000). https://doi.org/10.1148/radiology.215.2.r00ap18463

  45. Y. Diao, L. Liang, C. Yu, M. Zhang, Is there an identifiable intact medial wall of the cavernous sinus? Macro- and microscopic anatomical study using sheet plastination. Neurosurgery 73, ons106–ons109 (2013). https://doi.org/10.1227/NEU.0b013e3182889f2b.

    Article  PubMed  Google Scholar 

  46. K. Shi, Z. Li, X. Wu et al., The medial wall and medial compartment of the cavernous sinus: an anatomic study using plastinated histological sections. Neurosurg. Rev. 45(5), 3381–3391 (2022). https://doi.org/10.1007/s10143-022-01846-9

    Article  PubMed  Google Scholar 

  47. S. Yilmazlar, H. Kocaeli, F. Aydiner, E. Korfali, Medial portion of the cavernous sinus: quantitative analysis of the medial wall. Clin. Anat. 18(6), 416–422 (2005). https://doi.org/10.1002/ca.20160

    Article  PubMed  Google Scholar 

  48. V.V. Dolenc (ed.), Anatomy of the cavernous sinus. in Anatomy and Surgery of the Cavernous Sinus. (Springer; 1989), pp. 3–137. https://doi.org/10.1007/978-3-7091-6942-1_2

  49. S.H. Kim, K.C. Lee, S.H. Kim, Cranial nerve palsies accompanying pituitary tumour. J. Clin. Neurosci. 14(12), 1158–1162 (2007). https://doi.org/10.1016/j.jocn.2006.07.016

    Article  PubMed  Google Scholar 

  50. N. Cinar, Y. Tekinel, S. Dagdelen, H. Oruckaptan, F. Soylemezoglu, T. Erbas, Cavernous sinus invasion might be a risk factor for apoplexy. Pituitary 16(4), 483–489 (2013). https://doi.org/10.1007/s11102-012-0444-2

    Article  CAS  PubMed  Google Scholar 

  51. A. Hosmann, A. Micko, J.M. Frischer et al., Multiple pituitary apoplexy-cavernous sinus invasion as major risk factor for recurrent hemorrhage. World Neurosurg. 126, e723–e730 (2019). https://doi.org/10.1016/j.wneu.2019.02.138

    Article  PubMed  Google Scholar 

  52. A. Dincer, V. Sharma, N. Madan, C. Heilman, Cavernous segment internal carotid artery stenosis specific to meningiomas compared to pituitary adenomas. J. Neuroimaging 33(1), 73–78 (2023). https://doi.org/10.1111/jon.13051

    Article  PubMed  Google Scholar 

  53. S. Melmed, Pituitary-tumor endocrinopathies. N. Engl. J. Med. 382(10), 937–950 (2020). https://doi.org/10.1056/NEJMra1810772

    Article  CAS  PubMed  Google Scholar 

  54. M. Buchfelder, S.M. Schlaffer, The surgical treatment of acromegaly. Pituitary 20(1), 76–83 (2017). https://doi.org/10.1007/s11102-016-0765-7

    Article  CAS  PubMed  Google Scholar 

  55. J. Wass, Debulking of pituitary adenomas improves hormonal control of acromegaly by somatostatin analogues. Eur. J. Endocrinol. 152(5), 693–694 (2005). https://doi.org/10.1530/eje.1.01896

    Article  CAS  PubMed  Google Scholar 

  56. A. Colao, R. Attanasio, R. Pivonello et al., Partial surgical removal of growth hormone-secreting pituitary tumors enhances the response to somatostatin analogs in acromegaly. J. Clin. Endocrinol. Metab. 91(1), 85–92 (2006). https://doi.org/10.1210/jc.2005-1208

    Article  CAS  PubMed  Google Scholar 

  57. R.S. Jallad, N.R. Musolino, S. Kodaira, V.A. Cescato, M.D. Bronstein, Does partial surgical tumour removal influence the response to octreotide-LAR in acromegalic patients previously resistant to the somatostatin analogue? Clin. Endocrinol. 67(2), 310–315 (2007). https://doi.org/10.1111/j.1365-2265.2007.02885.x

    Article  CAS  Google Scholar 

  58. N. Karavitaki, H.E. Turner, C.B.T. Adams et al., Surgical debulking of pituitary macroadenomas causing acromegaly improves control by lanreotide. Clin. Endocrinol. 68(6), 970–975 (2008). https://doi.org/10.1111/j.1365-2265.2007.03139.x

    Article  CAS  Google Scholar 

  59. P. Petrossians, L. Borges-Martins, C. Espinoza et al., Gross total resection or debulking of pituitary adenomas improves hormonal control of acromegaly by somatostatin analogs. Eur. J. Endocrinol. 152(1), 61–66 (2005). https://doi.org/10.1530/eje.1.01824

    Article  CAS  PubMed  Google Scholar 

  60. A. Giustina, N. Biermasz, F.F. Casanueva et al., Consensus on criteria for acromegaly diagnosis and remission. Pituitary 27(1), 7–22 (2024). https://doi.org/10.1007/s11102-023-01360-1

    Article  CAS  PubMed  Google Scholar 

  61. M. Fleseriu, R. Auchus, I. Bancos et al., Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol. 9(12), 847–875 (2021). https://doi.org/10.1016/S2213-8587(21)00235-7

    Article  PubMed  PubMed Central  Google Scholar 

  62. Y. Greenman, G. Ouaknine, I. Veshchev, I.I. Reider-Groswasser, Y. Segev, N. Stern, Postoperative surveillance of clinically nonfunctioning pituitary macroadenomas: markers of tumour quiescence and regrowth. Clin. Endocrinol. 58(6), 763–769 (2003). https://doi.org/10.1046/j.1365-2265.2003.01784.x

    Article  CAS  Google Scholar 

  63. E.P. O’Sullivan, C. Woods, N. Glynn et al., The natural history of surgically treated but radiotherapy-naïve nonfunctioning pituitary adenomas. Clin. Endocrinol. 71(5), 709–714 (2009). https://doi.org/10.1111/j.1365-2265.2009.03583.x

    Article  Google Scholar 

  64. C.P. Hofstetter, B.J. Shin, L. Mubita et al., Endoscopic endonasal transsphenoidal surgery for functional pituitary adenomas. Neurosurg. Focus 30(4), E10 (2011). https://doi.org/10.3171/2011.1.FOCUS10317

    Article  PubMed  Google Scholar 

  65. A. Ajlan, A.S. Achrol, A. Albakr et al., Cavernous sinus involvement by pituitary adenomas: clinical implications and outcomes of endoscopic endonasal resection. J. Neurol. Surg. B Skull Base 78(3), 273–282 (2017). https://doi.org/10.1055/s-0036-1598022

    Article  PubMed  PubMed Central  Google Scholar 

  66. H. Borghei-Razavi, B.A. Muhsen, K. Joshi, T. Woodard, V.R. Kshettry, Endoscopic extracapsular resection of an adrenocorticotropic hormone–secreting macroadenoma with selective resection of the medial cavernous sinus wall. World Neurosurg. 144, 199 (2020). https://doi.org/10.1016/j.wneu.2020.09.087

    Article  PubMed  Google Scholar 

  67. L.J.M. de Macêdo Filho, A.V.G. Diógenes, E.G. Barreto et al., Endoscopic endonasal resection of the medial wall of the cavernous sinus and its impact on outcomes of pituitary surgery: a systematic review and meta-analysis. Brain Sci. 12(10), 1354 (2022). https://doi.org/10.3390/brainsci12101354

    Article  PubMed  PubMed Central  Google Scholar 

  68. A. Ishida, H. Shiramizu, H. Yoshimoto et al., Resection of the cavernous sinus medial wall improves remission rate in functioning pituitary tumors: retrospective analysis of 248 consecutive cases. Neurosurgery 91(5), 775–781 (2022). https://doi.org/10.1227/neu.0000000000002109

    Article  PubMed  Google Scholar 

  69. Y. Nagata, K. Takeuchi, T. Yamamoto et al., Removal of the medial wall of the cavernous sinus for functional pituitary adenomas: a technical report and pathologic significance. World Neurosurg. 126, 53–58 (2019). https://doi.org/10.1016/j.wneu.2019.02.134

    Article  PubMed  Google Scholar 

  70. E.H. Oldfield, Cushing’s disease: lessons learned from 1500 cases. Neurosurgery 64, 27–36 (2017). https://doi.org/10.1093/neuros/nyx378

    Article  PubMed  Google Scholar 

  71. A.T. Omar, D.G. Munoz, J. Goguen et al., Resection of the medial wall of the cavernous sinus in functioning pituitary adenomas: technical note and outcomes in a matched-cohort study. Clin. Neurol. Neurosurg. 200, 106306 (2021). https://doi.org/10.1016/j.clineuro.2020.106306

    Article  Google Scholar 

  72. H.H. Park, E.H. Kim, C.R. Ku, E.J. Lee, S.H. Kim, Outcomes of aggressive surgical resection in growth hormone–secreting pituitary adenomas with cavernous sinus invasion. World Neurosurg. 117, e280–e289 (2018). https://doi.org/10.1016/j.wneu.2018.06.012

    Article  PubMed  Google Scholar 

  73. S. Berkmann, S. Schlaffer, C. Nimsky, R. Fahlbusch, M. Buchfelder, Intraoperative high-field MRI for transsphenoidal reoperations of nonfunctioning pituitary adenoma. J. Neurosurg. 121(5), 1166–1175 (2014). https://doi.org/10.3171/2014.6.JNS131994

    Article  PubMed  Google Scholar 

  74. P.T. Sylvester, J.A. Evans, G.J. Zipfel et al., Combined high-field intraoperative magnetic resonance imaging and endoscopy increase extent of resection and progression-free survival for pituitary adenomas. Pituitary 18(1), 72–85 (2015). https://doi.org/10.1007/s11102-014-0560-2

    Article  PubMed  PubMed Central  Google Scholar 

  75. R. Fahlbusch, B.V. Keller, O. Ganslandt, J. Kreutzer, C. Nimsky, Transsphenoidal surgery in acromegaly investigated by intraoperative high-field magnetic resonance imaging. Eur. J. Endocrinol. 153(2), 239–248 (2005). https://doi.org/10.1530/eje.1.01970

    Article  CAS  PubMed  Google Scholar 

  76. P.S. Jones, B. Swearingen, Intraoperative MRI for pituitary adenomas. Neurosurg. Clin. N. Am. 30(4), 413–420 (2019). https://doi.org/10.1016/j.nec.2019.05.003

    Article  PubMed  Google Scholar 

  77. Y. Greenman, K. Tordjman, E. Osher et al., Postoperative treatment of clinically nonfunctioning pituitary adenomas with dopamine agonists decreases tumour remnant growth. Clin. Endocrinol. 63(1), 39–44 (2005). https://doi.org/10.1111/j.1365-2265.2005.02295.x

    Article  CAS  Google Scholar 

  78. Y. Greenman, M.D. Bronstein, Cabergoline should be attempted in progressing non-functioning pituitary macroadenoma. Eur. J. Endocrinol. 185(4), D11–D20 (2021). https://doi.org/10.1530/EJE-21-0344

    Article  CAS  PubMed  Google Scholar 

  79. R.L. Batista, N.R.C. Musolino, V.A.S. Cescato et al., Cabergoline in the management of residual nonfunctioning pituitary adenoma: a single-center, open-label, 2-year randomized clinical trial. Am. J. Clin. Oncol. 42(2), 221–227 (2019). https://doi.org/10.1097/COC.0000000000000505

    Article  CAS  PubMed  Google Scholar 

  80. A. Colao, C. Di Somma, R. Pivonello, A. Faggiano, G. Lombardi, S. Savastano, Medical therapy for clinically non-functioning pituitary adenomas. Endocr. Relat. Cancer 15(4), 905–915 (2008). https://doi.org/10.1677/ERC-08-0181

    Article  CAS  PubMed  Google Scholar 

  81. P. Breen, J.C. Flickinger, D. Kondziolka, A.J. Martinez, Radiotherapy for nonfunctional pituitary adenoma: analysis of long-term tumor control. J. Neurosurg. 89(6), 933–938 (1998). https://doi.org/10.3171/jns.1998.89.6.0933

    Article  CAS  PubMed  Google Scholar 

  82. M.N. Hughes, K.J. Llamas, M.E. Yelland, L.B. Tripcony, Pituitary adenomas: long-term results for radiotherapy alone and post-operative radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 27(5), 1035–1043 (1993). https://doi.org/10.1016/0360-3016(93)90520-6

    Article  CAS  PubMed  Google Scholar 

  83. F. Castinetti, J. Régis, H. Dufour, T. Brue, Role of stereotactic radiosurgery in the management of pituitary adenomas. Nat. Rev. Endocrinol. 6(4), 214–223 (2010). https://doi.org/10.1038/nrendo.2010.4

    Article  PubMed  Google Scholar 

  84. P. Colin, N. Jovenin, B. Delemer et al., Treatment of pituitary adenomas by fractionated stereotactic radiotherapy: a prospective study of 110 patients. Int. J. Radiat. Oncol. Biol. Phys. 62(2), 333–341 (2005). https://doi.org/10.1016/j.ijrobp.2004.09.058

    Article  PubMed  Google Scholar 

  85. J. Estrada, M. Boronat, M. Mielgo et al., The long-term outcome of pituitary irradiation after unsuccessful transsphenoidal surgery in Cushing’s disease. N. Engl. J. Med. 336(3), 172–177 (1997). https://doi.org/10.1056/NEJM199701163360303

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

With financial support from the French National Research Agency (ANR) and ITMO Cancer of Aviesan within the framework of the 2021–2030 Cancer Control Strategy, on funds administred by Inserm.

Author information

Authors and Affiliations

Authors

Contributions

E.L., F.C., and P.K. wrote the main manuscript. M.B. prépare Fig. 1 and E.L. prepared Fig. 2. All authors reviewed the manuscript.

Corresponding author

Correspondence to Etienne Lefevre.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefevre, E., Chasseloup, F., Hage, M. et al. Clinical and therapeutic implications of cavernous sinus invasion in pituitary adenomas. Endocrine (2024). https://doi.org/10.1007/s12020-024-03877-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-024-03877-2

Navigation