Skip to main content

Advertisement

Log in

Metformin-induced changes of the gut microbiota in patients with type 2 diabetes mellitus: results from a prospective cohort study

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

The influence of the microbiota on hypoglycemic agents is becoming more apparent. The effects of metformin, a primary anti-diabetes drug, on gut microbiota are still not fully understood.

Research design and methods

This prospective cohort study aims to investigate the longitudinal effects of metformin on the gut microbiota of 25 treatment-naïve diabetes patients, each receiving a daily dose of 1500 mg. Microbiota compositions were analyzed at baseline, and at 1, 3, and 6 months of medication using 16S rRNA gene sequencing.

Results

Prior to the 3-month period of metformin treatment, significant improvements were noted in body mass index (BMI) and glycemic-related parameters, such as fasting blood glucose (FPG) and hemoglobin A1c (HbA1c), alongside homeostasis model assessment indices of insulin resistance (HOMA-IR). At the 3-month mark of medication, a significant reduction in the α-diversity of the gut microbiota was noted, while β-diversity exhibited no marked variances throughout the treatment duration. The Firmicutes to Bacteroidetes ratio. markedly decreased. Metformin treatment consistently increased Escherichia-Shigella and decreased Romboutsia, while Pseudomonas decreased at 3 months. Fuzzy c-means clustering identified three longitudinal trajectory clusters for microbial fluctuations: (i) genera temporarily changing, (ii) genera continuing to decrease (Bacteroides), and (iii) genera continuing to increase(Lachnospiraceae ND3007 group, [Eubacterium] xylanophilum group, Romboutsia, Faecalibacterium and Ruminococcaceae UCG-014). The correlation matrix revealed associations between specific fecal taxa and metformin-related clinical parameters HbA1c, FPG, Uric Acid (UA), high-density lipoproteincholesterol (HDL-C), alanine aminotransferase (ALT), hypersensitive C-reactive protein (hs-CRP), triglyceride (TG) (P < 0.05). Metacyc database showed that metformin significantly altered 17 functional pathways. Amino acid metabolism pathways such as isoleucine biosynthesis predominated in the post-treatment group.

Conclusions

Metformin’s role in glucose metabolism regulation may primarily involve specific alterations in certain gut microbial species rather than an overall increase in microbial species diversity. This may suggest gut microbiota targets in future studies on metabolic abnormalities caused by metformin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Supplementary data are available online at https://pan.baidu.com/s/1uL5Mm-eRUyp3aLlKIaOdJg?pwd=t4ph.

References

  1. Collaborators GBDD, Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 402(10397), 203–234 (2023). https://doi.org/10.1016/S0140-6736(23)01301-6

    Article  Google Scholar 

  2. U. Galicia-Garcia, A. Benito-Vicente, S. Jebari, A. Larrea-Sebal, H. Siddiqi, K.B. Uribe et al. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 21(17), 6275 (2020). https://doi.org/10.3390/ijms21176275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. H. Sun, P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B.B. Duncan et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022). https://doi.org/10.1016/j.diabres.2021.109119

    Article  PubMed  Google Scholar 

  4. H. Tilg, A.R. Moschen, Microbiota and diabetes: an evolving relationship. Gut 63(9), 1513–1521 (2014). https://doi.org/10.1136/gutjnl-2014-306928

    Article  CAS  PubMed  Google Scholar 

  5. A.L. Cunningham, J.W. Stephens, D.A. Harris, Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut. Pathog. 13(1), 50 (2021). https://doi.org/10.1186/s13099-021-00446-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. R. Li, F. Shokri, A.L. Rincon, F. Rivadeneira, C. Medina-Gomez, F. Ahmadizar, Bi-Directional Interactions between Glucose-Lowering Medications and Gut Microbiome in Patients with Type 2 Diabetes Mellitus: A Systematic Review. Genes. 14(8) (2023) https://doi.org/10.3390/genes14081572

  7. M. Foretz, B. Guigas, B. Viollet, Metformin: update on mechanisms of action and repurposing potential. Nat. Rev. Endocrinol. 19(8), 460–476 (2023). https://doi.org/10.1038/s41574-023-00833-4

    Article  CAS  PubMed  Google Scholar 

  8. L.J. McCreight, C.J. Bailey, E.R. Pearson, Metformin and the gastrointestinal tract. Diabetologia 59(3), 426–435 (2016). https://doi.org/10.1007/s00125-015-3844-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. C.J. Bailey, C. Wilcock, J.H. Scarpello, Metformin and the intestine. Diabetologia 51(8), 1552–1553 (2008). https://doi.org/10.1007/s00125-008-1053-5

    Article  CAS  PubMed  Google Scholar 

  10. E. Bonora, M. Cigolini, O. Bosello, C. Zancanaro, L. Capretti, I. Zavaroni et al. Lack of effect of intravenous metformin on plasma concentrations of glucose, insulin, C-peptide, glucagon and growth hormone in non-diabetic subjects. Curr. Med. Res. Opin. 9(1), 47–51 (1984). https://doi.org/10.1185/03007998409109558

    Article  CAS  PubMed  Google Scholar 

  11. J.B. Buse, R.A. DeFronzo, J. Rosenstock, T. Kim, C. Burns, S. Skare et al. The Primary Glucose-Lowering Effect of Metformin Resides in the Gut, Not the Circulation: Results From Short-term Pharmacokinetic and 12-Week Dose-Ranging Studies. Diabetes Care 39(2), 198–205 (2016). https://doi.org/10.2337/dc15-0488

    Article  CAS  PubMed  Google Scholar 

  12. N.R. Shin, J.C. Lee, H.Y. Lee, M.S. Kim, T.W. Whon, M.S. Lee et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63(5), 727–735 (2014). https://doi.org/10.1136/gutjnl-2012-303839

    Article  CAS  PubMed  Google Scholar 

  13. P. Pavlo, I. Kamyshna, A. Kamyshnyi, Effects of metformin on the gut microbiota: A systematic review. Mol. Metab. 77, 101805 (2023). https://doi.org/10.1016/j.molmet.2023.101805

    Article  CAS  Google Scholar 

  14. N.T. Mueller, M.K. Differding, M. Zhang, N.M. Maruthur, S.P. Juraschek, E.R. Miller 3rd et al. Metformin Affects Gut Microbiome Composition and Function and Circulating Short-Chain Fatty Acids: A Randomized Trial. Diabetes Care 44(7), 1462–1471 (2021). https://doi.org/10.2337/dc20-2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J. de la Cuesta-Zuluaga, N.T. Mueller, V. Corrales-Agudelo, E.P. Velasquez-Mejia, J.A. Carmona, J.M. Abad et al. Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid-Producing Microbiota in the Gut. Diabetes Care 40(1), 54–62 (2017). https://doi.org/10.2337/dc16-1324

    Article  CAS  PubMed  Google Scholar 

  16. K. Forslund, F. Hildebrand, T. Nielsen, G. Falony, E. Le Chatelier, S. Sunagawa et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581), 262–266 (2015). https://doi.org/10.1038/nature15766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. F. Zhang, M. Wang, J. Yang, Q. Xu, C. Liang, B. Chen et al. Response of gut microbiota in type 2 diabetes to hypoglycemic agents. Endocrine 66(3), 485–493 (2019). https://doi.org/10.1007/s12020-019-02041-5

    Article  CAS  PubMed  Google Scholar 

  18. I. Elbere, I. Silamikelis, I.I. Dindune, I. Kalnina, M. Ustinova, L. Zaharenko et al. Baseline gut microbiome composition predicts metformin therapy short-term efficacy in newly diagnosed type 2 diabetes patients. PLoS One 15(10), e0241338 (2020). https://doi.org/10.1371/journal.pone.0241338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. L. Sun, C. Xie, G. Wang, Y. Wu, Q. Wu, X. Wang et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 24(12), 1919–1929 (2018). https://doi.org/10.1038/s41591-018-0222-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. H. Nakajima, F. Takewaki, Y. Hashimoto, S. Kajiyama, S. Majima, H. Okada et al. The Effects of Metformin on the Gut Microbiota of Patients with Type 2 Diabetes: A Two-Center, Quasi-Experimental Study. Life 10(9), 195 (2020). https://doi.org/10.3390/life10090195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A. Napolitano, S. Miller, A.W. Nicholls, D. Baker, S. Van Horn, E. Thomas et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS One 9(7), e100778 (2014). https://doi.org/10.1371/journal.pone.0100778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. T. Magoc, S.L. Salzberg, FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21), 2957–2963 (2011). https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C.A. Dennison, A.J. Eslinger, R.A. Reimer, Preconception Prebiotic and Sitagliptin Treatment in Obese Rats Affects Pregnancy Outcomes and Offspring Microbiota, Adiposity, and Glycemia. Front. Endocrinol. 8, 301 (2017). https://doi.org/10.3389/fendo.2017.00301

    Article  Google Scholar 

  24. N. Segata, J. Izard, L. Waldron, D. Gevers, L. Miropolsky, W.S. Garrett et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12(6), R60 (2011). https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  25. M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550 (2014). https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. R.L. Cannon, J.V. Dave, J.C. Bezdek, Efficient Implementation of the Fuzzy c-Means Clustering Algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 8(2), 248–255 (1986). https://doi.org/10.1109/tpami.1986.4767778

    Article  CAS  PubMed  Google Scholar 

  27. G.M. Douglas, V.J. Maffei, J.R. Zaneveld, S.N. Yurgel, J.R. Brown, C.M. Taylor et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38(6), 685–688 (2020). https://doi.org/10.1038/s41587-020-0548-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. Koh, F. De Vadder, P. Kovatcheva-Datchary, F. Backhed, From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 165(6), 1332–1345 (2016). https://doi.org/10.1016/j.cell.2016.05.041

    Article  CAS  PubMed  Google Scholar 

  29. S.Y. Park, A. Ufondu, K. Lee, A. Jayaraman, Emerging computational tools and models for studying gut microbiota composition and function. Curr. Opin. Biotechnol. 66, 301–311 (2020). https://doi.org/10.1016/j.copbio.2020.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. I. Elbere, I. Kalnina, I. Silamikelis, I. Konrade, L. Zaharenko, K. Sekace et al. Association of metformin administration with gut microbiome dysbiosis in healthy volunteers. PLoS One 13(9), e0204317 (2018). https://doi.org/10.1371/journal.pone.0204317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S. Mrozinska, P. Radkowski, T. Gosiewski, M. Szopa, M. Bulanda, A.H. Ludwig-Galezowska et al. Qualitative Parameters of the Colonic Flora in Patients with HNF1A-MODY Are Different from Those Observed in Type 2 Diabetes Mellitus. J. Diabetes Res. 2016, 3876764 (2016). https://doi.org/10.1155/2016/3876764

    Article  PubMed  PubMed Central  Google Scholar 

  32. A. Chavez-Carbajal, M.L. Pizano-Zarate, F. Hernandez-Quiroz, G.F. Ortiz-Luna, R.M. Morales-Hernandez, A. De Sales-Millan et al. Characterization of the Gut Microbiota of Individuals at Different T2D Stages Reveals a Complex Relationship with the Host. Microorganisms 8(1), 94 (2020). https://doi.org/10.3390/microorganisms8010094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. E. Sepp, H. Kolk, K. Loivukene, M. Mikelsaar Higher blood glucose level associated with body mass index and gut microbiota in elderly people. Microb. Ecol. Health Dis. 25 (2014). https://doi.org/10.3402/mehd.v25.22857

  34. P.M. Ryan, E. Patterson, I. Carafa, R. Mandal, D.S. Wishart, T.G. Dinan et al. Metformin and Dipeptidyl Peptidase-4 Inhibitor Differentially Modulate the Intestinal Microbiota and Plasma Metabolome of Metabolically Dysfunctional Mice. Can. J. Diabetes 44(2), 146–55.e2 (2020). https://doi.org/10.1016/j.jcjd.2019.05.008

    Article  PubMed  Google Scholar 

  35. N. Larsen, F.K. Vogensen, F.W. van den Berg, D.S. Nielsen, A.S. Andreasen, B.K. Pedersen et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5(2), e9085 (2010). https://doi.org/10.1371/journal.pone.0009085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. H.S. Ejtahed, R.Y. Tito, S.D. Siadat, S. Hasani-Ranjbar, Z. Hoseini-Tavassol, L. Rymenans et al. Metformin induces weight loss associated with gut microbiota alteration in non-diabetic obese women: a randomized double-blind clinical trial. Eur. J. Endocrinol. 180(3), 165–176 (2019). https://doi.org/10.1530/EJE-18-0826

    Article  CAS  PubMed  Google Scholar 

  37. X. Niu, P. Lu, L. Huang, Y. Sun, M. Jin, J. Liu, et al. The effect of metformin combined with liraglutide on gut microbiota of Chinese patients with type 2 diabetes. Int. Microbiol. (2023). https://doi.org/10.1007/s10123-023-00380-y

  38. L. Crovesy, D. Masterson, E.L. Rosado, Profile of the gut microbiota of adults with obesity: a systematic review. Eur. J. Clin. Nutr. 74(9), 1251–1262 (2020). https://doi.org/10.1038/s41430-020-0607-6

    Article  PubMed  Google Scholar 

  39. C.K. Chakraborti, New-found link between microbiota and obesity. World J. Gastrointest. Pathophysiol. 6(4), 110–119 (2015). https://doi.org/10.4291/wjgp.v6.i4.110

    Article  PubMed  PubMed Central  Google Scholar 

  40. T. Tavella, S. Rampelli, G. Guidarelli, A. Bazzocchi, C. Gasperini, E. Pujos-Guillot et al. Elevated gut microbiome abundance of Christensenellaceae, Porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut Microbes 13(1), 1–19 (2021). https://doi.org/10.1080/19490976.2021.1880221

    Article  CAS  PubMed  Google Scholar 

  41. J.L. Kubinak, C. Petersen, W.Z. Stephens, R. Soto, E. Bake, R.M. O’Connell et al. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 17(2), 153–163 (2015). https://doi.org/10.1016/j.chom.2014.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Q. Zeng, D. Li, Y. He, Y. Li, Z. Yang, X. Zhao et al. Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities. Sci. Rep. 9(1), 13424 (2019). https://doi.org/10.1038/s41598-019-49462-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. P. Guilloteau, L. Martin, V. Eeckhaut, R. Ducatelle, R. Zabielski, F. Van Immerseel, From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr. Res. Rev. 23(2), 366–384 (2010). https://doi.org/10.1017/S0954422410000247

    Article  CAS  PubMed  Google Scholar 

  44. S. Wu, C. Sun, Y. Li, T. Wang, L. Jia, S. Lai et al. GMrepo: a database of curated and consistently annotated human gut metagenomes. Nucleic Acids Res. 48(D1), D545–D553 (2020). https://doi.org/10.1093/nar/gkz764

    Article  CAS  PubMed  Google Scholar 

  45. M. Tong, X. Li, L. Wegener Parfrey, B. Roth, A. Ippoliti, B. Wei et al. A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease. PLoS One 8(11), e80702 (2013). https://doi.org/10.1371/journal.pone.0080702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. P. Wang, J. Gao, W. Ke, J. Wang, D. Li, R. Liu et al. Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota. Free Radic. Biol. Med. 156, 83–98 (2020). https://doi.org/10.1016/j.freeradbiomed.2020.04.013

    Article  CAS  PubMed  Google Scholar 

  47. Q. Luo, D. Cheng, C. Huang, Y. Li, C. Lao, Y. Xia et al. Improvement of Colonic Immune Function with Soy Isoflavones in High-Fat Diet-Induced Obese Rats. Molecules 24(6), 1139 (2019). https://doi.org/10.3390/molecules24061139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. P. Fan, P. Liu, P. Song, X. Chen, X. Ma, Moderate Dietary Protein Restriction Alters the Composition of Gut Microbiota and Improves Ileal Barrier Function in Adult Pig Model. Sci. Rep. 7, 43412 (2017). https://doi.org/10.1038/srep43412

    Article  PubMed  PubMed Central  Google Scholar 

  49. W.Y. Yang, Y. Lee, H. Lu, C.H. Chou, C. Wang, Analysis of Gut Microbiota and the Effect of Lauric Acid Against Necrotic Enteritis in Clostridium Perfringens and Eimeria Side-by-Side Challenge Model. PloS One 14(5), e0205784 (2019). https://doi.org/10.1371/journal.pone.0205784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. H. Wu, E. Esteve, V. Tremaroli, M.T. Khan, R. Caesar, L. Manneras-Holm et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23(7), 850–858 (2017). https://doi.org/10.1038/nm.4345

    Article  CAS  PubMed  Google Scholar 

  51. Q. Zhang, X. Xiao, J. Zheng, M. Li, M. Yu, F. Ping et al. Featured article: Structure moderation of gut microbiota in liraglutide-treated diabetic male rats. Exp. Biol. Med. 243(1), 34–44 (2018). https://doi.org/10.1177/1535370217743765

    Article  CAS  Google Scholar 

  52. M. Million, E. Angelakis, M. Maraninchi, M. Henry, R. Giorgi, R. Valero et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int. J. Obes. 37(11), 1460–1466 (2013). https://doi.org/10.1038/ijo.2013.20

    Article  CAS  Google Scholar 

  53. C. Pedersen, U.Z. Ijaz, E. Gallagher, F. Horton, R.J. Ellis, E. Jaiyeola et al. Fecal Enterobacteriales enrichment is associated with increased in vivo intestinal permeability in humans. Physiol. Rep. 6(7), e13649 (2018). https://doi.org/10.14814/phy2.13649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Y. Que, M. Cao, J. He, Q. Zhang, Q. Chen, C. Yan et al. Gut Bacterial Characteristics of Patients With Type 2 Diabetes Mellitus and the Application Potential. Front. Immunol. 12, 722206 (2021). https://doi.org/10.3389/fimmu.2021.722206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, W.Z. T.Y., and B.Z.; methodology, B.Z., W.Z. and Y.G.; software, N.L. and Y.G.; validation, T.Z., and N.L.; formal analysis, S.L., N.L., T.Z. and Y.G.; investigation, S.L., T.Z., Y.F. and Y.G.; resources, S.L., T.Z., N.L. and Y.G.; data curation, S.L., T.Z. and Y.G.; writing—original draft preparation, Y.G.; writing—review and editing, W.Z., T.Y., and Y.G.; visualization, N.L. and Y.G.; supervision, Y.F., T.Y., and W.Z; project administration, W.Z. and B.Z. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Weigang Zhao or Baoli Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for publication

The authors affirm that all individual participants provided informed consent for the publication of the data. Additional informed consent was obtained from all individual participants for whom identifying information was included in this article. Written informed consent has been obtained from the patients to publish this paper.

Ethics approval and consent to participate

The study was conducted in accordance with the Declaration of Helsinki, and approved by the Institutional Review Board of PUMCH (JS-2579/202009.22). Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhao, T., Lv, N. et al. Metformin-induced changes of the gut microbiota in patients with type 2 diabetes mellitus: results from a prospective cohort study. Endocrine (2024). https://doi.org/10.1007/s12020-024-03828-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-024-03828-x

Keywords

Navigation