Skip to main content
Log in

Bone mineral density in adults growth hormone deficiency with different ages of onset: a real-world retrospective study

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Bone mineral density (BMD) impairment is one of the critical factors for long-term quality of life in adults growth hormone deficiency (AGHD). This study aims to investigate the annual changes in BMD in AGHD patients with different ages of onset and to identify predicting factors that influence BMD.

Methods

AGHD patients (n = 160) with available data for 4 years follow-up from a major tertiary medical center in China were retrospectively included (110 [68.8%] childhood-onset, 119 [74.4%] male). BMD of the axial bone (including total hip, neck of femur, and L1–4) derived from dual X-ray absorptiometry and final height were investigated at the first visit, 12 months, 24 months, 36 months, and 48 months thereafter. Low BMD was defined as Z-score ≤ −2.

Results

The prevalence of low BMD was 30.0% at baseline and 12.5% at 4 years of follow-up. The CO AGHD group presented a significantly lower BMD than the AO AGHD group at the baseline (P = 0.009). In contrast, the CO AGHD group had significantly greater median annual BMD change than the AO AGHD group (0.044 vs. −0.0003 g/cm2/year in L1–4, P < 0.001), indicating a significant difference in the overall BMD trend between CO and AO groups. Childhood-onset (odds ratio [OR] 0.326, P = 0.012), low serum testosterone (OR 0.847; P = 0.004) and FT4 (OR 0.595; P = 0.039) level were independent risk factors for BMD loss.

Conclusion

The annual changes of BMD show a different pattern in AGHD patients with varying ages of onset. Patients with CO AGHD have a lower bone mass, and in general, appropriate replacement therapy is necessary for long-term bone health in AGHD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data supporting the conclusions of this manuscript are included in this published article or available from the corresponding author upon request.

References

  1. S. Melmed, Pathogenesis and diagnosis of growth hormone deficiency in adults. N. Engl. J. Med. 380(26), 2551–2562 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. N.A. Tritos, B.M.K. Biller, Current concepts of the diagnosis of adult growth hormone deficiency. Rev. Endocr. Metab. Disord. 22(1), 109–116 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. C.C. van Bunderen, D.S. Olsson, Growth hormone deficiency and replacement therapy in adults: impact on survival. Rev. Endocr. Metab. Disord. 22(1), 125–133 (2021)

    Article  PubMed  Google Scholar 

  4. M.E. Molitch, D.R. Clemmons, S. Malozowski, G.R. Merriam, M. Lee Vance; Endocrine Society, Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96(6), 1587–1609 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. N.A. Tritos, B.M.K. Biller, Growth hormone and bone. Curr. Opin. Endocrinol. Diabetes Obes. 16(6), 415–422 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. P.S. Dixit M, S. Yakar, Effects of GH/IGF axis on bone and cartilage. Mol. Cell Endocrinol. 519, 111052 (2021)

    Article  PubMed  Google Scholar 

  7. H.L. Racine, M.A. Serrat, The actions of IGF-1 in the growth plate and its role in postnatal bone elongation. Curr. Osteoporos. Rep. 18(3), 210–227 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  8. S.J. Holmes, S.M. Shalet, Role of growth hormone and sex steroids in achieving and maintaining normal bone mass. Horm. Res. 45(1–2), 86–93 (1996)

    Article  CAS  PubMed  Google Scholar 

  9. J.S. Walsh, Y. Henry, D. Fatayerji, R. Eastell, Hormonal determinants of bone turnover before and after attainment of peak bone mass. Clin. Endocrinol. 72(3), 320–327 (2010)

    Article  CAS  Google Scholar 

  10. Q. Wang, E. Seeman, Skeletal growth and peak bone strength. Best Pract. Res. Clin. Endocrinol. Metab. 22(5), 687–700 (2008)

    Article  PubMed  Google Scholar 

  11. S. Zhang, Y. Cui, X. Ma, J. Yong, L. Yan, M. Yang, J. Ren, F. Tang, L. Wen, J. Qiao, Single-cell transcriptomics identifies divergent developmental lineage trajectories during human pituitary development. Nat. Commun. 11(1), 5275 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Gangat, S. Radovick, Pitutary hypoplasia. Endocrinol. Metab. Clin. N. Am. 46(2), 247–257 (2017)

    Article  Google Scholar 

  13. J.J. Díez, S. Sangiao-Alvarellos, F. Cordido, Treatment with growth hormone for adults with growth hormone deficiency syndrome: benefits and risks. Int J. Mol. Sci. 19(3), 893 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  14. H. Yang, K. Yan, X. Yuping, Q. Zhang, L. Wang, F. Gong, H. Zhu, W. Xia, H. Pan, Bone microarchitecture and volumetric bone density impairment in young male adults with childhood-onset growth hormone deficiency. Eur. J. Endocrinol. 180(2), 145–153 (2019)

    Article  PubMed  Google Scholar 

  15. S. Liu et al. Reduced bone mineral density in middle-aged male patients with adult growth hormone deficiency. Horm. Metab. Res. 54(7), 450–457 (2022)

    Article  CAS  PubMed  Google Scholar 

  16. H. Zhu, Y. Xu, F. Gong, G. Shan, H. Yang, K. Xu, D. Zhang, X. Cheng, Z. Zhang, S. Chen, L. Wang, H. Pan, Reference ranges for serum insulin-like growth factor I (IGF-I) in healthy Chinese adults. PLoS ONE 12(10), e0185561 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  17. H. Li, C.-Y. Ji, X.-N. Zong, Y.-Q. Zhang, Height and weight standardized growth charts for Chinese children and adolescents aged 0 to 18 years. Zhonghua Er Ke Za Zhi 47(7), 487–492 (2009)

    PubMed  Google Scholar 

  18. A. Giustina, G. Mazziotti, E. Canalis, Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev. 29(5), 535–559 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Yakar, H. Werner, C.J. Rosen, Insulin-like growth factors: actions on the skeleton. J. Mol. Endocrinol. 61(1), T115–T137 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J. Banu, L. Wang, D.N. Kalu, Effects of increased muscle mass on bone in male mice overexpressing IGF-I in skeletal muscles. Calcif. Tissue Int. 73(2), 196–201 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. L. Xu et al. Concerted actions of insulin-like growth factor 1, testosterone, and estradiol on peripubertal bone growth: a 7-year longitudinal study. J. Bone Min. Res. 26(9), 2204–2211 (2011)

    Article  CAS  Google Scholar 

  22. M.E. Breen et al. 25-hydroxyvitamin D, insulin-like growth factor-I, and bone mineral accrual during growth. J. Clin. Endocrinol. Metab. 96(1), E89–E98 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. R. Bouillon et al. Bone status and fracture prevalence in Russian adults with childhood-onset growth hormone deficiency. J. Clin. Endocrinol. Metab. 89(10), 4993–4998 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. T. Rosén, T. Hansson, H. Granhed, J. Szucs, B.A. Bengtsson, Reduced bone mineral content in adult patients with growth hormone deficiency. Acta Endocrinol. 129(3), 201–206 (1993)

    Google Scholar 

  25. P.V. Carroll et al. Growth hormone deficiency in adulthood and the effects of growth hormone replacement: a review. Growth Hormone Research Society Scientific Committee. J. Clin. Endocrinol. Metab. 83(2), 382–395 (1998)

    Article  CAS  PubMed  Google Scholar 

  26. J.M. Kaufman, P. Taelman, A. Vermeulen, M. Vandeweghe, Bone mineral status in growth hormone-deficient males with isolated and multiple pituitary deficiencies of childhood onset. J. Clin. Endocrinol. Metab. 74(1), 118–123 (1992)

    CAS  PubMed  Google Scholar 

  27. S. Cvijetić, M. Korsić, Apparent bone mineral density estimated from DXA in healthy men and women. Osteoporos. Int. 15(4), 295–300 (2004)

    Article  PubMed  Google Scholar 

  28. N.M. Appelman-Dijkstra et al. Effects of up to 15 years of recombinant human GH (rhGH) replacement on bone metabolism in adults with growth hormone deficiency (GHD): the Leiden Cohort Study. Clin. Endocrinol. 81(5), 727–735 (2014)

    Article  CAS  Google Scholar 

  29. N.M. Appelman-Dijkstra et al. Long-term effects of recombinant human GH replacement in adults with GH deficiency: a systematic review. Eur. J. Endocrinol. 169(1), R1–R14 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. W.M. Drake et al. The influence of gender on the short and long-term effects of growth hormone replacement on bone metabolism and bone mineral density in hypopituitary adults: a 5-year study. Clin. Endocrinol. 54(4), 525–532 (2001)

    Article  CAS  Google Scholar 

  31. G. Götherström et al. Ten-year GH replacement increases bone mineral density in hypopituitary patients with adult onset GH deficiency. Eur. J. Endocrinol. 156(1), 55–64 (2007)

    Article  PubMed  Google Scholar 

  32. M. Elbornsson et al. Fifteen years of GH replacement increases bone mineral density in hypopituitary patients with adult-onset GH deficiency. Eur. J. Endocrinol. 166(5), 787–795 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. A.P. Delitala, A. Scuteri, C. Doria, Thyroid hormone diseases and osteoporosis. J. Clin. Med. 9(4), 1034 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. D. Tuchendler, M. Bolanowski, The influence of thyroid dysfunction on bone metabolism. Thyroid Res. 7(1), 12 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  35. V. Birzniece, K.K.Y. Ho, Sex steroids and the GH axis: implications for the management of hypopituitarism. Best Pract. Res. Clin. Endocrinol. Metab. 31(1), 59–69 (2017)

    Article  CAS  PubMed  Google Scholar 

  36. J. Gibney et al. Growth hormone and testosterone interact positively to enhance protein and energy metabolism in hypopituitary men. Am. J. Physiol. Endocrinol. Metab. 289(2), E266–E271 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. G. Götherström et al. A prospective study of 5 years of GH replacement therapy in GH-deficient adults: sustained effects on body composition, bone mass, and metabolic indices. J. Clin. Endocrinol. Metab. 86(10), 4657–4665 (2001)

    Article  PubMed  Google Scholar 

  38. A. Rossini et al. Bone and body composition analyses by DXA in adults with GH deficiency: effects of long-term replacement therapy. Endocrine 74(3), 666–675 (2021)

    Article  CAS  PubMed  Google Scholar 

  39. P. Kendall-Taylor et al. The clinical, metabolic and endocrine features and the quality of life in adults with childhood-onset craniopharyngioma compared with adult-onset craniopharyngioma. Eur. J. Endocrinol. 152(4), 557–567 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. S.S. van Santen et al. Fractures, bone mineral density, and final height in craniopharyngioma patients with a follow-up of 16 years. J. Clin. Endocrinol. Metab. 105(4), e1397–e1407 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the technical support of the PUMCH-EMERALD platform.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81970678); National High Level Hospital Clinical Research Funding (2022-PUMCH-B-016); and CAMS Innovation Fund for Medical Sciences (CIFMS 2021-I2M-1-003).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Hongbo Yang and Meiping Chen wrote the draft of the manuscript and prepared figures and tables; Huijuan Zhu and Hui Pan designed the study; Linjie Wang, Lian Duan, Yunfeng Zhen, and Hanyuan Xu collected the clinical data; Fengying Gong helped analyze biochemical data; Yuelun Zhang guided the data processing and statistical analysis. All authors reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Huijuan Zhu or Hui Pan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Chen, M., Xu, H. et al. Bone mineral density in adults growth hormone deficiency with different ages of onset: a real-world retrospective study. Endocrine (2024). https://doi.org/10.1007/s12020-024-03786-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-024-03786-4

Keywords

Navigation