Skip to main content

Advertisement

Log in

Extra-adrenal aldosterone: a mini review focusing on the physiology and pathophysiology of intrarenal aldosterone

  • Mini Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Accumulating evidence has demonstrated the existence of extra-adrenal aldosterone in various tissues, including the brain, heart, vascular, adipocyte, and kidney, mainly based on the detection of the CYP11B2 (aldosterone synthase, cytochrome P450, family 11, subfamily B, polypeptide 2) expression using semi-quantitative methods including reverse transcription-polymerase chain reaction and antibody-based western blotting, as well as local tissue aldosterone levels by antibody-based immunosorbent assays. This mini-review highlights the current evidence and challenges in extra-adrenal aldosterone, focusing on intrarenal aldosterone.

Methods

A narrative review.

Results

Locally synthesized aldosterone may play a vital role in various physio-pathological processes, especially cardiovascular events. The site of local aldosterone synthesis in the kidney may include the mesangial cells, podocytes, proximal tubules, and collecting ducts. The synthesis of renal aldosterone may be regulated by (pro)renin receptor/(pro)renin, angiotensin II/Angiotensin II type 1 receptor, wnt/β-catenin, cyclooxygenase-2/prostaglandin E2, and klotho. Enhanced renal aldosterone release promotes Na+ reabsorption and K+ excretion in the distal nephron and may contribute to the progress of diabetic nephropathy and salt-related hypertension.

Conclusions

Inhibition of intrarenal aldosterone signaling by aldosterone synthase inhibitors or mineralocorticoid receptor antagonists may be a hopeful pharmacological technique for the therapy of diabetic nephropathy and saltrelated hypertension. Yet, current reports are often conflicting or ambiguous, leading many to question whether extra-adrenal aldosterone exists, or whether it is of any physiological and pathophysiological significance.

Highlights

  • Local aldosterone synthesis may present in extra-adrenal tissues like the kidneys and play significant physiological and pathophysiological significance.

  • Wnt/β-catenin pathway interacts with PRR/sPRR contributing to intrarenal aldosterone synthesis by activating intrarenal RAS.

  • COX-2/PGE2/EP1 pathway stimulates intrarenal aldosterone production by activating sPRR/β-catenin signaling.

  • Intrarenal aldosterone may contribute to Na+/K+ homeostasis, kidney injury, and salt-related hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.C. Spaulding, W.B. Bollag, The role of lipid second messengers in aldosterone synthesis and secretion. J. Lipid Res. 63, 100191 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. C. Duparc, P. Camponova, M. Roy, H. Lefebvre, M. Thomas, Ectopic localization of CYP11B1 and CYP11B2-expressing cells in the normal human adrenal gland. PLoS ONE 17, e0279682 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  3. W.C. Boon, J.P. Coghlan, J.G. McDougall, Late steps of aldosterone biosynthesis: sheep are not rats. Clin. Exp. Pharm. Physiol. Suppl. 25, S21–S27 (1998)

    Article  CAS  Google Scholar 

  4. J. Müller, Regulation of aldosterone biosynthesis: the end of the road? Clin. Exp. Pharm. Physiol. Suppl. 25, S79–S85 (1998)

    Article  Google Scholar 

  5. M. Okamoto, Y. Nonaka, H. Takemori, J. Doi, Molecular identity and gene expression of aldosterone synthase cytochrome P450. Biochem. Biophys. Res. Commun. 338, 325–330 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. G.H. Williams, Aldosterone biosynthesis, regulation, and classical mechanism of action. Heart Fail Rev. 10, 7–13 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. H. Castrop, K. Höcherl, A. Kurtz, F. Schweda, V. Todorov, C. Wagner, Physiology of kidney renin. Physiol. Rev. 90, 607–673 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. K. Schilbach, R.K. Junnila, M. Bidlingmaier, Aldosterone to renin ratio as screening tool in primary aldosteronism. Exp. Clin. Endocrinol. Diabetes 127, 84–92 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. C.A. Wagner, Effect of mineralocorticoids on acid-base balance. Nephron Physiol. 128, 26–34 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. J.P. Arroyo, C. Ronzaud, D. Lagnaz, O. Staub, G. Gamba, Aldosterone paradox: differential regulation of ion transport in distal nephron. Physiology 26, 115–123 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. X. Gao, Y. Yamazaki, Y. Tezuka, K. Omata, Y. Ono, R. Morimoto, Y. Nakamura, T. Suzuki, F. Satoh, H. Sasano, Pathology of aldosterone biosynthesis and its action. Tohoku J. Exp. Med. 254, 1–15 (2021)

    Article  CAS  PubMed  Google Scholar 

  12. A. Tsilosani, C. Gao, W. Zhang, Aldosterone-regulated sodium transport and blood pressure. Front. Physiol. 13, 770375 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  13. F. Buffolo, M. Tetti, P. Mulatero, S. Monticone, Aldosterone as a mediator of cardiovascular damage. Hypertension 79, 1899–1911 (2022)

    Article  CAS  PubMed  Google Scholar 

  14. S.M. MacKenzie, J.M. Connell, E. Davies, Non-adrenal synthesis of aldosterone: a reality check. Mol. Cell Endocrinol. 350, 163–167 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. E. Davies, S.M. MacKenzie, Extra-adrenal production of corticosteroids. Clin. Exp. Pharm. Physiol. 30, 437–445 (2003)

    Article  CAS  Google Scholar 

  16. E.M. Freel, R. Bernhardt, M. Ingram, A.M. Wallace, R. Fraser, E. Davies, J.M. Connell, Endogenous corticosteroid biosynthesis in subjects after bilateral adrenalectomy. Clin. Endocrinol. 66, 659–665 (2007)

    Article  CAS  Google Scholar 

  17. S.M. MacKenzie, C.J. Clark, R. Fraser, C.E. Gómez-Sánchez, J.M. Connell, E. Davies, Expression of 11beta-hydroxylase and aldosterone synthase genes in the rat brain. J. Mol. Endocrinol. 24, 321–328 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. E.P. Gomez-Sanchez, N. Ahmad, D.G. Romero, C.E. Gomez-Sanchez, Origin of aldosterone in the rat heart. Endocrinology 145, 4796–4802 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. Y. Takeda, Vascular synthesis of aldosterone: role in hypertension. Mol. Cell Endocrinol. 217, 75–79 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. A.M. Briones, A. Nguyen Dinh Cat, G.E. Callera, A. Yogi, D. Burger, Y. He, J.W. Corrêa, A.M. Gagnon, C.E. Gomez-Sanchez, E.P. Gomez-Sanchez, A. Sorisky, T.C. Ooi, M. Ruzicka, K.D. Burns, R.M. Touyz, Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension 59, 1069–1078 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. C. Xue, H.M. Siragy, Local renal aldosterone system and its regulation by salt, diabetes, and angiotensin II type 1 receptor. Hypertension 46, 584–590 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. C. Xu, Y. Chen, N. Ramkumar, C. Zou, C.D. Sigmund, T. Yang, Collecting duct renin regulates potassium homeostasis in mice. Acta Physiol. 237, e13899 (2023)

    Article  CAS  Google Scholar 

  23. J.M. Brown, R.J. Auchus, B. Honzel, J.M. Luther, N. Yozamp, A. Vaidya, Recalibrating interpretations of aldosterone assays across the physiologic range: immunoassay and liquid chromatography-tandem mass spectrometry measurements under multiple controlled conditions. J. Endocr. Soc. 6, bvac049 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  24. L. Yu, D.G. Romero, C.E. Gomez-Sanchez, E.P. Gomez-Sanchez, Steroidogenic enzyme gene expression in the human brain. Mol. Cell Endocrinol. 190, 9–17 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. S.M. MacKenzie, D. Dewar, W. Stewart, R. Fraser, J.M. Connell, E. Davies, The transcription of steroidogenic genes in the human cerebellum and hippocampus: a comparative survey of normal and Alzheimer’s tissue. J. Endocrinol. 196, 123–130 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. M. Strömstedt, M.R. Waterman, Messenger RNAs encoding steroidogenic enzymes are expressed in rodent brain. Brain Res. Mol. Brain Res. 34, 75–88 (1995)

    Article  PubMed  Google Scholar 

  27. C.E. Gomez-Sanchez, M.Y. Zhou, E.N. Cozza, H. Morita, M.F. Foecking, E.P. Gomez-Sanchez, Aldosterone biosynthesis in the rat brain. Endocrinology 138, 3369–3373 (1997)

    Article  CAS  PubMed  Google Scholar 

  28. E.P. Gomez-Sanchez, N. Ahmad, D.G. Romero, C.E. Gomez-Sanchez, Is aldosterone synthesized within the rat brain? Am. J. Physiol. Endocrinol. Metab. 288, E342–E346 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. P. Ye, C.J. Kenyon, S.M. MacKenzie, J.R. Seckl, R. Fraser, J.M. Connell, E. Davies, Regulation of aldosterone synthase gene expression in the rat adrenal gland and central nervous system by sodium and angiotensin II. Endocrinology 144, 3321–3328 (2003)

    Article  CAS  PubMed  Google Scholar 

  30. P. Ye, C.J. Kenyon, S.M. Mackenzie, K. Nichol, J.R. Seckl, R. Fraser, J.M. Connell, E. Davies, Effects of ACTH, dexamethasone, and adrenalectomy on 11beta-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) gene expression in the rat central nervous system. J. Endocrinol. 196, 305–311 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. B.S. Huang, R.A. White, A.Y. Jeng, F.H. Leenen, Role of central nervous system aldosterone synthase and mineralocorticoid receptors in salt-induced hypertension in Dahl salt-sensitive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R994–R1000 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. E.P. Gomez-Sanchez, C.M. Gomez-Sanchez, M. Plonczynski, C.E. Gomez-Sanchez, Aldosterone synthesis in the brain contributes to Dahl salt-sensitive rat hypertension. Exp. Physiol. 95, 120–130 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. E.P. Gomez-Sanchez, C. Fort, D. Thwaites, Central mineralocorticoid receptor antagonism blocks hypertension in Dahl S/JR rats. Am. J. Physiol. 262, E96–E99 (1992)

    CAS  PubMed  Google Scholar 

  34. H.W. Wang, B.S. Huang, A. Chen, M. Ahmad, R.A. White, F.H. Leenen, Role of brain aldosterone and mineralocorticoid receptors in aldosterone-salt hypertension in rats. Neuroscience 314, 90–105 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. B.S. Huang, R.A. White, M. Ahmad, J. Tan, A.Y. Jeng, F.H. Leenen, Central infusion of aldosterone synthase inhibitor attenuates left ventricular dysfunction and remodelling in rats after myocardial infarction. Cardiovasc. Res. 81, 574–581 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. N. Oshima, H. Onimaru, H. Takechi, K. Yamamoto, A. Watanabe, T. Uchida, Y. Nishida, T. Oda, H. Kumagai, Aldosterone is synthesized in and activates bulbospinal neurons through mineralocorticoid receptors and ENaCs in the RVLM. Hypertens. Res. 36, 504–512 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. D.M. Mohamed, M. Shaqura, X. Li, M. Shakibaei, A. Beyer, S. Treskatsch, M. Schäfer, S.A. Mousa, Aldosterone synthase in peripheral sensory neurons contributes to mechanical hypersensitivity during local inflammation in rats. Anesthesiology 132, 867–880 (2020)

    Article  CAS  PubMed  Google Scholar 

  38. Y. Takeda, T. Yoneda, M. Demura, I. Miyamori, H. Mabuchi, Cardiac aldosterone production in genetically hypertensive rats. Hypertension 36, 495–500 (2000)

    Article  CAS  PubMed  Google Scholar 

  39. Y. Takeda, T. Yoneda, M. Demura, I. Miyamori, H. Mabuchi, Sodium-induced cardiac aldosterone synthesis causes cardiac hypertrophy. Endocrinology 141, 1901–1904 (2000)

    Article  CAS  PubMed  Google Scholar 

  40. Y. Takeda, T. Yoneda, M. Demura, K. Furukawa, I. Miyamori, H. Mabuchi, Effects of high sodium intake on cardiovascular aldosterone synthesis in stroke-prone spontaneously hypertensive rats. J. Hypertens. 19, 635–639 (2001)

    Article  CAS  PubMed  Google Scholar 

  41. J.S. Silvestre, V. Robert, C. Heymes, B. Aupetit-Faisant, C. Mouas, J.M. Moalic, B. Swynghedauw, C. Delcayre, Myocardial production of aldosterone and corticosterone in the rat. Physiological regulation. J. Biol. Chem. 273, 4883–4891 (1998)

    Article  CAS  PubMed  Google Scholar 

  42. W.W. Zhang, R.H. Zheng, F. Bai, K. Sturdivant, N.P. Wang, E.A. James, H.S. Bose, Z.Q. Zhao, Steroidogenic acute regulatory protein/aldosterone synthase mediates angiotensin II-induced cardiac fibrosis and hypertrophy. Mol. Biol. Rep. 47, 1207–1222 (2020)

    Article  CAS  PubMed  Google Scholar 

  43. T. Ito, M. Yoshimura, S. Nakamura, M. Nakayama, Y. Shimasaki, E. Harada, Y. Mizuno, M. Yamamuro, M. Harada, Y. Saito, K. Nakao, H. Kurihara, H. Yasue, H. Ogawa, Inhibitory effect of natriuretic peptides on aldosterone synthase gene expression in cultured neonatal rat cardiocytes. Circulation 107, 807–810 (2003)

    Article  CAS  PubMed  Google Scholar 

  44. X.Q. Zhu, H.S. Hong, X.H. Lin, L.L. Chen, Y.H. Li, Changes in cardiac aldosterone and its synthase in rats with chronic heart failure: an intervention study of long-term treatment with recombinant human brain natriuretic peptide. Braz. J. Med. Biol. Res. 47, 646–654 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. M. Satoh, M. Nakamura, H. Saitoh, H. Satoh, T. Akatsu, J. Iwasaka, T. Masuda, K. Hiramori, Aldosterone synthase (CYP11B2) expression and myocardial fibrosis in the failing human heart. Clin. Sci. 102, 381–386 (2002)

    Article  CAS  Google Scholar 

  46. Y. Mizuno, M. Yoshimura, H. Yasue, T. Sakamoto, H. Ogawa, K. Kugiyama, E. Harada, M. Nakayama, S. Nakamura, T. Ito, Y. Shimasaki, Y. Saito, K. Nakao, Aldosterone production is activated in failing ventricle in humans. Circulation 103, 72–77 (2001)

    Article  CAS  PubMed  Google Scholar 

  47. Y. Mizuno, H. Yasue, M. Yoshimura, H. Fujii, N. Yamamoto, M. Nakayama, E. Harada, T. Sakamoto, S. Nakamura, T. Ito, Y. Shimasaki, H. Ogawa, Y. Saito, K. Nakao, Effects of perindopril on aldosterone production in the failing human heart. Am. J. Cardiol. 89, 1197–1200 (2002)

    Article  CAS  PubMed  Google Scholar 

  48. N. Yamamoto, H. Yasue, Y. Mizuno, M. Yoshimura, H. Fujii, M. Nakayama, E. Harada, S. Nakamura, T. Ito, H. Ogawa, Aldosterone is produced from ventricles in patients with essential hypertension. Hypertension 39, 958–962 (2002)

    Article  CAS  PubMed  Google Scholar 

  49. S. Nakamura, M. Yoshimura, M. Nakayama, T. Ito, Y. Mizuno, E. Harada, T. Sakamoto, Y. Saito, K. Nakao, H. Yasue, H. Ogawa, Possible association of heart failure status with synthetic balance between aldosterone and dehydroepiandrosterone in human heart. Circulation 110, 1787–1793 (2004)

    Article  CAS  PubMed  Google Scholar 

  50. S. Messaoudi, B. Gravez, A. Tarjus, V. Pelloux, A. Ouvrard-Pascaud, C. Delcayre, J. Samuel, J.M. Launay, C. Sierra-Ramos, D. Alvarez de la Rosa, K. Clément, N. Farman, F. Jaisser, Aldosterone-specific activation of cardiomyocyte mineralocorticoid receptor in vivo. Hypertension 61, 361–367 (2013)

    Article  CAS  PubMed  Google Scholar 

  51. D. Fraccarollo, S. Berger, P. Galuppo, S. Kneitz, L. Hein, G. Schütz, S. Frantz, G. Ertl, J. Bauersachs, Deletion of cardiomyocyte mineralocorticoid receptor ameliorates adverse remodeling after myocardial infarction. Circulation 123, 400–408 (2011)

    Article  CAS  PubMed  Google Scholar 

  52. R.H. Oakley, D. Cruz-Topete, B. He, J.F. Foley, P.H. Myers, X. Xu, C.E. Gomez-Sanchez, P. Chambon, M.S. Willis, J.A. Cidlowski, Cardiomyocyte glucocorticoid and mineralocorticoid receptors directly and antagonistically regulate heart disease in mice. Sci. Signal. 12, eaau9685 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  53. A. Lother, S. Berger, R. Gilsbach, S. Rösner, A. Ecke, F. Barreto, J. Bauersachs, G. Schütz, L. Hein, Ablation of mineralocorticoid receptors in myocytes but not in fibroblasts preserves cardiac function. Hypertension 57, 746–754 (2011)

    Article  CAS  PubMed  Google Scholar 

  54. A.J. Rickard, J. Morgan, L.A. Bienvenu, E.K. Fletcher, G.A. Cranston, J.Z. Shen, M.E. Reichelt, L.M. Delbridge, M.J. Young, Cardiomyocyte mineralocorticoid receptors are essential for deoxycorticosterone/salt-mediated inflammation and cardiac fibrosis. Hypertension 60, 1443–1450 (2012)

    Article  CAS  PubMed  Google Scholar 

  55. K.M. Kayes-Wandover, P.C. White, Steroidogenic enzyme gene expression in the human heart. J. Clin. Endocrinol. Metab. 85, 2519–2525 (2000)

    CAS  PubMed  Google Scholar 

  56. M.J. Young, C.D. Clyne, T.J. Cole, J.W. Funder, Cardiac steroidogenesis in the normal and failing heart. J. Clin. Endocrinol. Metab. 86, 5121–5126 (2001)

    Article  CAS  PubMed  Google Scholar 

  57. M. Yoshimura, S. Nakamura, T. Ito, M. Nakayama, E. Harada, Y. Mizuno, T. Sakamoto, M. Yamamuro, Y. Saito, K. Nakao, H. Yasue, H. Ogawa, Expression of aldosterone synthase gene in failing human heart: quantitative analysis using modified real-time polymerase chain reaction. J. Clin. Endocrinol. Metab. 87, 3936–3940 (2002)

    Article  CAS  PubMed  Google Scholar 

  58. P. Ye, C.J. Kenyon, S.M. MacKenzie, A.S. Jong, C. Miller, G.A. Gray, A. Wallace, A.S. Ryding, J.J. Mullins, M.W. McBride, D. Graham, R. Fraser, J.M. Connell, E. Davies, The aldosterone synthase (CYP11B2) and 11beta-hydroxylase (CYP11B1) genes are not expressed in the rat heart. Endocrinology 146, 5287–5293 (2005)

    Article  CAS  PubMed  Google Scholar 

  59. A. Fiebeler, J. Nussberger, E. Shagdarsuren, S. Rong, G. Hilfenhaus, N. Al-Saadi, R. Dechend, M. Wellner, S. Meiners, C. Maser-Gluth, A.Y. Jeng, R.L. Webb, F.C. Luft, D.N. Muller, Aldosterone synthase inhibitor ameliorates angiotensin II-induced organ damage. Circulation 111, 3087–3094 (2005)

    Article  CAS  PubMed  Google Scholar 

  60. R. Rocha, C.L. Martin-Berger, P. Yang, R. Scherrer, J. Delyani, E. McMahon, Selective aldosterone blockade prevents angiotensin II/salt-induced vascular inflammation in the rat heart. Endocrinology 143, 4828–4836 (2002)

    Article  CAS  PubMed  Google Scholar 

  61. M. Hayashi, T. Tsutamoto, A. Wada, K. Maeda, N. Mabuchi, T. Tsutsui, T. Matsui, M. Fujii, T. Matsumoto, T. Yamamoto, H. Horie, M. Ohnishi, M. Kinoshita, Relationship between transcardiac extraction of aldosterone and left ventricular remodeling in patients with first acute myocardial infarction: extracting aldosterone through the heart promotes ventricular remodeling after acute myocardial infarction. J. Am. Coll. Cardiol. 38, 1375–1382 (2001)

    Article  CAS  PubMed  Google Scholar 

  62. T. Tsutamoto, A. Wada, K. Maeda, N. Mabuchi, M. Hayashi, T. Tsutsui, M. Ohnishi, M. Sawaki, M. Fujii, T. Matsumoto, H. Horie, Y. Sugimoto, M. Kinoshita, Spironolactone inhibits the transcardiac extraction of aldosterone in patients with congestive heart failure. J. Am. Coll. Cardiol. 36, 838–844 (2000)

    Article  CAS  PubMed  Google Scholar 

  63. N. Ahmad, D.G. Romero, E.P. Gomez-Sanchez, C.E. Gomez-Sanchez, Do human vascular endothelial cells produce aldosterone? Endocrinology 145, 3626–3629 (2004)

    Article  CAS  PubMed  Google Scholar 

  64. H. Hatakeyama, I. Miyamori, Y. Takeda, H. Yamamoto, H. Mabuchi, The expression of steroidogenic enzyme genes in human vascular cells. Biochem. Mol. Biol. Int. 40, 639–645 (1996)

    CAS  PubMed  Google Scholar 

  65. H. Hatakeyama, I. Miyamori, T. Fujita, Y. Takeda, R. Takeda, H. Yamamoto, Vascular aldosterone. Biosynthesis and a link to angiotensin II-induced hypertrophy of vascular smooth muscle cells. J. Biol. Chem. 269, 24316–24320 (1994)

    Article  CAS  PubMed  Google Scholar 

  66. R. Takeda, H. Hatakeyama, Y. Takeda, K. Iki, I. Miyamori, W.P. Sheng, H. Yamamoto, I.A. Blair, Aldosterone biosynthesis and action in vascular cells. Steroids 60, 120–124 (1995)

    Article  CAS  PubMed  Google Scholar 

  67. Y. Takeda, I. Miyamori, T. Yoneda, K. Iki, H. Hatakeyama, I.A. Blair, F.Y. Hsieh, R. Takeda, Synthesis of corticosterone in the vascular wall. Endocrinology 135, 2283–2286 (1994)

    Article  CAS  PubMed  Google Scholar 

  68. Y. Takeda, I. Miyamori, T. Yoneda, H. Hatakeyama, S. Inaba, K. Furukawa, H. Mabuchi, R. Takeda, Regulation of aldosterone synthase in human vascular endothelial cells by angiotensin II and adrenocorticotropin. J. Clin. Endocrinol. Metab. 81, 2797–2800 (1996)

    CAS  PubMed  Google Scholar 

  69. Y. Takeda, I. Miyamori, T. Yoneda, K. Iki, H. Hatakeyama, I.A. Blair, F.Y. Hsieh, R. Takeda, Production of aldosterone in isolated rat blood vessels. Hypertension 25, 170–173 (1995)

    Article  CAS  PubMed  Google Scholar 

  70. P. Wu, Z. Guo, Y. Zhang, Y. Liu, X. Liang, R. Zhang, W. Lai, Y. Takeda, M. Isamu, R. Takeda, Aldosterone overproduction and CYP11B2 mRNA overexpression in vessels of spontaneously hypertensive rats. Horm. Res. 50, 28–31 (1998)

    CAS  PubMed  Google Scholar 

  71. Y. Takeda, I. Miyamori, S. Inaba, K. Furukawa, H. Hatakeyama, T. Yoneda, H. Mabuchi, R. Takeda, Vascular aldosterone in genetically hypertensive rats. Hypertension 29, 45–48 (1997)

    Article  CAS  PubMed  Google Scholar 

  72. T. Ohmine, Y. Miwa, F. Takahashi-Yanaga, S. Morimoto, Y. Maehara, T. Sasaguri, The involvement of aldosterone in cyclic stretch-mediated activation of NADPH oxidase in vascular smooth muscle cells. Hypertens. Res. 32, 690–699 (2009)

    Article  CAS  PubMed  Google Scholar 

  73. I. Alesutan, J. Voelkl, M. Feger, D.V. Kratschmar, T. Castor, S. Mia, M. Sacherer, R. Viereck, O. Borst, C. Leibrock, M. Gawaz, M. Kuro-O, S. Pilz, A. Tomaschitz, A. Odermatt, B. Pieske, C.A. Wagner, F. Lang, Involvement of vascular aldosterone synthase in phosphate-induced osteogenic transformation of vascular smooth muscle cells. Sci. Rep. 7, 2059 (2017)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  74. A. Gueret, N. Harouki, J. Favre, G. Galmiche, L. Nicol, J.P. Henry, M. Besnier, C. Thuillez, V. Richard, P. Kolkhof, P. Mulder, F. Jaisser, A. Ouvrard-Pascaud, Vascular smooth muscle mineralocorticoid receptor contributes to coronary and left ventricular dysfunction after myocardial infarction. Hypertension 67, 717–723 (2016)

    Article  CAS  PubMed  Google Scholar 

  75. S.K. Kim, L.A. Biwer, M.E. Moss, J.J. Man, M.J. Aronovitz, G.L. Martin, F.J. Carrillo-Salinas, A.M. Salvador, P. Alcaide, I.Z. Jaffe, Mineralocorticoid receptor in smooth muscle contributes to pressure overload-induced heart failure. Circ. Heart Fail. 14, e007279 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. J. Barrera-Chimal, G. André-Grégoire, A. Nguyen Dinh Cat, S.M. Lechner, J. Cau, S. Prince, P. Kolkhof, G. Loirand, V. Sauzeau, T. Hauet, F. Jaisser, Benefit of mineralocorticoid receptor antagonism in AKI: role of vascular smooth muscle Rac1. J. Am. Soc. Nephrol. 28, 1216–1226 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. C.A. Amador, J.P. Bertocchio, G. Andre-Gregoire, S. Placier, J.P. Duong Van Huyen, S. El Moghrabi, S. Berger, D.G. Warnock, C. Chatziantoniou, I.Z. Jaffe, P. Rieu, F. Jaisser, Deletion of mineralocorticoid receptors in smooth muscle cells blunts renal vascular resistance following acute cyclosporine administration. Kidney Int. 89, 354–362 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. G. Galmiche, A. Pizard, A. Gueret, S. El Moghrabi, A. Ouvrard-Pascaud, S. Berger, P. Challande, I.Z. Jaffe, C. Labat, P. Lacolley, F. Jaisser, Smooth muscle cell mineralocorticoid receptors are mandatory for aldosterone-salt to induce vascular stiffness. Hypertension 63, 520–526 (2014)

    Article  CAS  PubMed  Google Scholar 

  79. A. McCurley, P.W. Pires, S.B. Bender, M. Aronovitz, M.J. Zhao, D. Metzger, P. Chambon, M.A. Hill, A.M. Dorrance, M.E. Mendelsohn, I.Z. Jaffe, Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat. Med. 18, 1429–1433 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. M.E. Moss, J.J. DuPont, S.L. Iyer, A.P. McGraw, I.Z. Jaffe, No significant role for smooth muscle cell mineralocorticoid receptors in atherosclerosis in the apolipoprotein-E knockout mouse model. Front. Cardiovasc. Med. 5, 81 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  81. A. Tarjus, E. Belozertseva, H. Louis, S. El Moghrabi, C. Labat, P. Lacolley, F. Jaisser, G. Galmiche, Role of smooth muscle cell mineralocorticoid receptor in vascular tone. Pflug. Arch. 467, 1643–1650 (2015)

    Article  CAS  Google Scholar 

  82. D. Pruthi, A. McCurley, M. Aronovitz, C. Galayda, S.A. Karumanchi, I.Z. Jaffe, Aldosterone promotes vascular remodeling by direct effects on smooth muscle cell mineralocorticoid receptors. Arterioscler Thromb. Vasc. Biol. 34, 355–364 (2014)

    Article  CAS  PubMed  Google Scholar 

  83. S.K. Kim, A.T. McCurley, J.J. DuPont, M. Aronovitz, M.E. Moss, I.E. Stillman, S.A. Karumanchi, D.D. Christou, I.Z. Jaffe, Smooth muscle cell-mineralocorticoid receptor as a mediator of cardiovascular stiffness with aging. Hypertension 71, 609–621 (2018)

    Article  CAS  PubMed  Google Scholar 

  84. J.J. DuPont, S.K. Kim, R.M. Kenney, I.Z. Jaffe, Sex differences in the time course and mechanisms of vascular and cardiac aging in mice: role of the smooth muscle cell mineralocorticoid receptor. Am. J. Physiol. Heart Circ. Physiol. 320, H169–H180 (2021)

    Article  CAS  PubMed  Google Scholar 

  85. J. Ibarrola, S.K. Kim, Q. Lu, J.J. DuPont, A. Creech, Z. Sun, M.A. Hill, J.D. Jaffe, I.Z. Jaffe, Smooth muscle mineralocorticoid receptor as an epigenetic regulator of vascular ageing. Cardiovasc. Res. 118, 3386–3400 (2023)

    Article  PubMed  Google Scholar 

  86. N. Schäfer, C. Lohmann, S. Winnik, L.J. van Tits, M.X. Miranda, A. Vergopoulos, F. Ruschitzka, J. Nussberger, S. Berger, T.F. Lüscher, F. Verrey, C.M. Matter, Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. Eur. Heart J. 34, 3515–3524 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  87. A.J. Rickard, J. Morgan, S. Chrissobolis, A.A. Miller, C.G. Sobey, M.J. Young, Endothelial cell mineralocorticoid receptors regulate deoxycorticosterone/salt-mediated cardiac remodeling and vascular reactivity but not blood pressure. Hypertension 63, 1033–1040 (2014)

    Article  CAS  PubMed  Google Scholar 

  88. A. Lother, D. Fürst, S. Bergemann, R. Gilsbach, F. Grahammer, T.B. Huber, I. Hilgendorf, C. Bode, M. Moser, L. Hein, Deoxycorticosterone acetate/salt-induced cardiac but not renal injury is mediated by endothelial mineralocorticoid receptors independently from blood pressure. Hypertension 67, 130–138 (2016)

    Article  CAS  PubMed  Google Scholar 

  89. G. Jia, J. Habibi, A.R. Aroor, L.A. Martinez-Lemus, V.G. DeMarco, F.I. Ramirez-Perez, Z. Sun, M.R. Hayden, G.A. Meininger, K.B. Mueller, I.Z. Jaffe, J.R. Sowers, Endothelial mineralocorticoid receptor mediates diet-induced aortic stiffness in females. Circ. Res. 118, 935–943 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. A.R. Aroor, J. Habibi, R. Nistala, F.I. Ramirez-Perez, L.A. Martinez-Lemus, I.Z. Jaffe, J.R. Sowers, G. Jia, A. Whaley-Connell, Diet-induced obesity promotes kidney endothelial stiffening and fibrosis dependent on the endothelial mineralocorticoid receptor. Hypertension 73, 849–858 (2019)

    Article  CAS  PubMed  Google Scholar 

  91. A.M. Salvador, M.E. Moss, M. Aronovitz, K.B. Mueller, R.M. Blanton, I.Z. Jaffe, P. Alcaide, Endothelial mineralocorticoid receptor contributes to systolic dysfunction induced by pressure overload without modulating cardiac hypertrophy or inflammation. Physiol. Rep. 5, e13313 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  92. A. Aroor, V.G. DeMarco, A.T. Whaley-Connell, G. Jia, Y. Yang, N. Sharma, H. Naz, C. Hans, M.R. Hayden, M.A. Hill, J.R. Sowers, C. Manrique-Acevedo, G. Lastra, Endothelial cell-specific mineralocorticoid receptor activation promotes diastolic dysfunction in diet-induced obese male mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 324, R90–R101 (2023)

    Article  CAS  PubMed  Google Scholar 

  93. S.M. MacKenzie, S.S. Huda, N. Sattar, R. Fraser, J.M. Connell, E. Davies, Depot-specific steroidogenic gene transcription in human adipose tissue. Clin. Endocrinol. 69, 848–854 (2008)

    Article  CAS  Google Scholar 

  94. A.M. Briones, A. Nguyen Dinh Cat, G.E. Callera, A. Yogi, D. Burger, Y. He, J.W. Correa, A.M. Gagnon, C. Gomez- Sanchez, E.P. Gomez-Sanchez, A. Sorisky, K.D. Burns, R.M. Touyz, Production of aldosterone by adipocytes: implications for obesity and vascular function. Hypertension 56, e74 (2010)

    Google Scholar 

  95. A. Nguyen Dinh Cat, A.M. Briones, G.E. Callera, A. Yogi, Y. He, A.C. Montezano, R.M. Touyz, Adipocyte-derived factors regulate vascular smooth muscle cells through mineralocorticoid and glucocorticoid receptors. Hypertension 58, 479–488 (2011)

    Article  CAS  PubMed  Google Scholar 

  96. F.J. Rios, K.B. Neves, A. Nguyen Dinh Cat, S. Even, R. Palacios, A.C. Montezano, R.M. Touyz, Cholesteryl ester-transfer protein inhibitors stimulate aldosterone biosynthesis in adipocytes through Nox-dependent processes. J. Pharm. Exp. Ther. 353, 27–34 (2015)

    Article  CAS  Google Scholar 

  97. D. Ferguson, I. Hutson, E. Tycksen, T.A. Pietka, K. Bauerle, C.A. Harris, Role of mineralocorticoid receptor in adipogenesis and obesity in male mice. Endocrinology 161, bqz010 (2020)

    Article  PubMed  Google Scholar 

  98. T. Hayakawa, T. Minemura, T. Onodera, J. Shin, Y. Okuno, A. Fukuhara, M. Otsuki, I. Shimomura, Impact of MR on mature adipocytes in high-fat/high-sucrose diet-induced obesity. J. Endocrinol. 239, 63–71 (2018)

    Article  CAS  PubMed  Google Scholar 

  99. A. Feraco, A. Armani, R. Urbanet, A. Nguyen Dinh Cat, V. Marzolla, F. Jaisser, M. Caprio, Minor role of mature adipocyte mineralocorticoid receptor in high fat induced obesity. J. Endocrinol. 239, 229–240 (2018)

    Article  CAS  Google Scholar 

  100. A. Nguyen Dinh Cat, T.T. Antunes, G.E. Callera, A. Sanchez, S. Tsiropoulou, M.G. Dulak-Lis, A. Anagnostopoulou, Y. He, A.C. Montezano, F. Jaisser, R.M. Touyz, Adipocyte-specific mineralocorticoid receptor overexpression in mice is associated with metabolic syndrome and vascular dysfunction: role of redox-sensitive PKG-1 and Rho kinase. Diabetes 65, 2392–2403 (2016)

    Article  PubMed  Google Scholar 

  101. R. Urbanet, A. Nguyen Dinh Cat, A. Feraco, N. Venteclef, S. El Mogrhabi, C. Sierra-Ramos, D. Alvarez de la Rosa, G.K. Adler, D. Quilliot, P. Rossignol, F. Fallo, R.M. Touyz, F. Jaisser, Adipocyte mineralocorticoid receptor activation leads to metabolic syndrome and induction of prostaglandin D2 synthase. Hypertension 66, 149–157 (2015)

    Article  CAS  PubMed  Google Scholar 

  102. C. Lefranc, M. Friederich-Persson, F. Foufelle, A. Nguyen Dinh Cat, F. Jaisser, Adipocyte-mineralocorticoid receptor alters mitochondrial quality control leading to mitochondrial dysfunction and senescence of visceral adipose tissue. Int. J. Mol. Sci. 22, 2881 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. P. Wu, X. Liang, Y. Dai, H. Liu, Y. Zang, Z. Guo, R. Zhang, W. Lai, Y. Zhang, Y. Liu, Aldosterone biosynthesis in extraadrenal tissues. Chin. Med. J. 112, 414–418 (1999)

    CAS  PubMed  Google Scholar 

  104. X. Yang, X. Li, P. Wu, Y. Meng, S. Li, W. Lai, CYP11B2 expression in rat liver and the effect of spironolactone on hepatic fibrogenesis. Horm. Res. 53, 288–293 (2000)

    CAS  PubMed  Google Scholar 

  105. X. Li, X. Yang, P. Wu, Y. Meng, S. Li, W. Lai, Gene-CYP11B2 expression in rat liver in hepatic fibrogenesis induced by CCl4. Chin. Med. J. 114, 64–68 (2001)

    CAS  PubMed  Google Scholar 

  106. Z. Pang, H. Launonen, R. Korpela, H. Vapaatalo, Local aldosterone synthesis in the large intestine of mouse: an ex vivo incubation study. J. Int. Med. Res. 50, 1–18 (2022)

    Article  CAS  Google Scholar 

  107. H. Launonen, Z. Pang, J. Linden, A. Siltari, R. Korpela, H. Vapaatalo, Evidence for local aldosterone synthesis in the large intestine of the mouse. J. Physiol. Pharm. 72, 807–815 (2021)

    CAS  Google Scholar 

  108. Y. Greenman, Y. Trostanetsky, S. Ben-Shemen, N. Grazas, R. Limor, E. Osher, S. Lewicka, P. Vecsei, N. Stern, Thyroid cysts: a new extra-adrenal site of aldosterone synthase expression and increased aldosterone content. Clin. Endocrinol. 66, 886–889 (2007)

    Article  CAS  Google Scholar 

  109. M. Aleksiejczuk, A. Gromotowicz-Poplawska, N. Marcinczyk, A. Przylipiak, E. Chabielska, The expression of the renin-angiotensin-aldosterone system in the skin and its effects on skin physiology and pathophysiology. J. Physiol. Pharmacol. 70, (2019) https://doi.org/10.26402/jpp.22019.26403.26401

  110. J. Boix, L.M. Sevilla, Z. Sáez, E. Carceller, P. Pérez, Epidermal mineralocorticoid receptor plays beneficial and adverse effects in skin and mediates glucocorticoid responses. J. Investig. Dermatol. 136, 2417–2426 (2016)

    Article  CAS  PubMed  Google Scholar 

  111. J. Bigas, L.M. Sevilla, E. Carceller, J. Boix, P. Pérez, Epidermal glucocorticoid and mineralocorticoid receptors act cooperatively to regulate epidermal development and counteract skin inflammation. Cell Death Dis. 9, 588 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  112. E. Gomez-Sanchez, C.E. Gomez-Sanchez, The multifaceted mineralocorticoid receptor. Compr. Physiol. 4, 965–994 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  113. V.T. Nguyen, Q.T. Ngo, R.P. Ramirez, T. Nakamura, N. Farman, S. Aractingi, F. Jaisser, The myeloid mineralocorticoid receptor regulates dermal angiogenesis and inflammation in glucocorticoid-induced impaired wound healing. Br. J. Pharm. 179, 5222–5232 (2022)

    Article  CAS  Google Scholar 

  114. J. Bigas, L.M. Sevilla, P. Pérez, Epidermal mineralocorticoid receptor inactivation affects the homeostasis of all skin layers in chronologically aged mice. J. Invest. Dermatol. 140, 1899–1908 (2020)

    Article  CAS  PubMed  Google Scholar 

  115. E. Maubec, C. Laouénan, L. Deschamps, V.T. Nguyen, I. Scheer-Senyarich, A.C. Wackenheim-Jacobs, M. Steff, S. Duhamel, S. Tubiana, N. Brahimi, S. Leclerc-Mercier, B. Crickx, C. Perret, S. Aractingi, B. Escoubet, X. Duval, P. Arnaud, F. Jaisser, F. Mentré, N. Farman, Topical mineralocorticoid receptor blockade limits glucocorticoid-induced epidermal atrophy in human skin. J. Invest. Dermatol. 135, 1781–1789 (2015)

    Article  CAS  PubMed  Google Scholar 

  116. T. Nishikawa, S. Suematsu, J. Saito, A. Soyama, H. Ito, T. Kino, G. Chrousos, Human renal mesangial cells produce aldosterone in response to low-density lipoprotein (LDL). J. Steroid Biochem. Mol. Biol. 96, 309–316 (2005)

    Article  CAS  PubMed  Google Scholar 

  117. T. Nishikawa, Y. Matsuzawa, S. Suematsu, J. Saito, M. Omura, T. Kino, Effect of atorvastatin on aldosterone production induced by glucose, LDL or angiotensin II in human renal mesangial cells. Arzneimittelforschung 60, 445–451 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  118. S.H. Lee, T.H. Yoo, B.Y. Nam, D.K. Kim, J.J. Li, D.S. Jung, S.J. Kwak, D.R. Ryu, S.H. Han, J.E. Lee, S.J. Moon, D.S. Han, S.W. Kang, Activation of local aldosterone system within podocytes is involved in apoptosis under diabetic conditions. Am. J. Physiol. Ren. Physiol. 297, F1381–F1390 (2009)

    Article  CAS  Google Scholar 

  119. Q.L. Sun, M. Li, H.L. Rui, Y.P. Chen, Inhibition of local aldosterone by eplerenone reduces renal structural damage in a novel model of chronic cyclosporine A nephrotoxicity. J. Renin Angiotensin Aldosterone Syst. 16, 301–310 (2015)

    Article  CAS  PubMed  Google Scholar 

  120. C. Xu, X. Yi, M. Qin, S. Chu, C. Liu, J. Xiong, X. Ouyang, J. Yu, PGE2 stimulates aldosterone release via cAMP/sPRR/β-catenin pathway in mouse inner medullary collecting duct cells. J. Steroid Biochem. Mol. Biol. 255, 106205 (2023)

    Article  Google Scholar 

  121. C. Xu, G. Yang, Z. Fu, Y. Chen, S. Xie, F. Wang, T. Yang, Na+-retaining action of COX-2 (Cyclooxygenase-2)/EP1 pathway in the collecting duct via activation of intrarenal renin-angiotensin-aldosterone system and epithelial sodium channel. Hypertension 79, 1190–1202 (2022)

    Article  CAS  PubMed  Google Scholar 

  122. C. Xu, A. Lu, H. Wang, H. Fang, L. Zhou, P. Sun, T. Yang, (Pro)Renin receptor regulates potassium homeostasis through a local mechanism. Am. J. Physiol. Renal Physiol. 313, F641–F656 (2017)

  123. C. Xu, H. Fang, L. Zhou, A. Lu, T. Yang, High potassium promotes mutual interaction between (pro)renin receptor and the local renin-angiotensin-aldosterone system in rat inner medullary collecting duct cells. Am. J. Physiol. Cell Physiol. 311, C686–C695 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  124. H.M. Siragy, C. Xue, Local renal aldosterone production induces inflammation and matrix formation in kidneys of diabetic rats. Exp. Physiol. 93, 817–824 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. L.C. Matavelli, H.M. Siragy, Reduction of aldosterone production improves renal oxidative stress and fibrosis in diabetic rats. J. Cardiovasc. Pharm. 61, 17–22 (2013)

    Article  CAS  Google Scholar 

  126. L. Ghazi, T. Dudenbostel, C.P. Lin, S. Oparil, D.A. Calhoun, Urinary sodium excretion predicts blood pressure response to spironolactone in patients with resistant hypertension independent of aldosterone status. J. Hypertens. 34, 1005–1010 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. A. Zhu, T. Yoneda, M. Demura, S. Karashima, M. Usukura, M. Yamagishi, Y. Takeda, Effect of mineralocorticoid receptor blockade on the renal renin-angiotensin system in Dahl salt-sensitive hypertensive rats. J. Hypertens. 27, 800–805 (2009)

    Article  CAS  PubMed  Google Scholar 

  128. J. Ludwig, S. Kerscher, U. Brandt, K. Pfeiffer, F. Getlawi, D.K. Apps, H. Schägger, Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules. J. Biol. Chem. 273, 10939–10947 (1998)

    Article  CAS  PubMed  Google Scholar 

  129. G. Nguyen, F. Delarue, C. Burcklé, L. Bouzhir, T. Giller, J.D. Sraer, Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J. Clin. Invest. 109, 1417–1427 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. A. Daryadel, S. Bourgeois, M.F. Figueiredo, A. Gomes Moreira, N.B. Kampik, L. Oberli, N. Mohebbi, X. Lu, M.E. Meima, A.H. Danser, C.A. Wagner, Colocalization of the (Pro)renin receptor/Atp6ap2 with H+-ATPases in mouse kidney but prorenin does not acutely regulate intercalated cell H+-ATPase activity. PLoS ONE 11, e0147831 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  131. A. Advani, D.J. Kelly, A.J. Cox, K.E. White, S.L. Advani, K. Thai, K.A. Connelly, D. Yuen, J. Trogadis, A.M. Herzenberg, M.A. Kuliszewski, H. Leong-Poi, R.E. Gilbert, The (Pro)renin receptor: site-specific and functional linkage to the vacuolar H+-ATPase in the kidney. Hypertension 54, 261–269 (2009)

    Article  CAS  PubMed  Google Scholar 

  132. T. Yang, C. Xu, Physiology and pathophysiology of the intrarenal renin-angiotensin system: an update. J. Am. Soc. Nephrol. 28, 1040–1049 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. M. Qin, C. Xu, J. Yu, The soluble (Pro)Renin receptor in health and diseases: foe or friend? J. Pharm. Exp. Ther. 378, 251–261 (2021)

    Article  CAS  Google Scholar 

  134. C.M. Cruciat, B. Ohkawara, S.P. Acebron, E. Karaulanov, C. Reinhard, D. Ingelfinger, M. Boutros, C. Niehrs, Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 327, 459–463 (2010)

    Article  CAS  PubMed  ADS  Google Scholar 

  135. X. Lu, F. Wang, C. Xu, S. Soodvilai, K. Peng, J. Su, L. Zhao, K.T. Yang, Y. Feng, S.F. Zhou, J.Å. Gustafsson, T. Yang, Soluble (pro)renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor. Proc. Natl Acad. Sci. USA 113, E1898–E1906 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Z. Fu, F. Wang, X. Liu, J. Hu, J. Su, X. Lu, A. Lu, J.M. Cho, J.D. Symons, C.J. Zou, T. Yang, Soluble (pro)renin receptor induces endothelial dysfunction and hypertension in mice with diet-induced obesity via activation of angiotensin II type 1 receptor. Clin. Sci. 135, 793–810 (2021)

    Article  CAS  Google Scholar 

  137. C. Xu, Y. Chen, F. Wang, S. Xie, T. Yang, Soluble (pro)renin receptor as a negative regulator of NCC (Na+-Cl- Cotransporter) activity. Hypertension 78, 1027–1038 (2021)

    Article  CAS  PubMed  Google Scholar 

  138. Y. Chen, C. Xu, The interaction partners of (pro)renin receptor in the distal nephron. FASEB J. 34, 14136–14149 (2020)

    Article  CAS  PubMed  Google Scholar 

  139. C. Xu, C. Liu, J. Xiong, J. Yu, Cardiovascular aspects of the (pro)renin receptor: function and significance. FASEB J. 36, e22237 (2022)

    CAS  PubMed  Google Scholar 

  140. D. Watanabe, S. Morimoto, N. Morishima, Y. Kato, Y. Nagashima, N. Shibata, A. Ichihara, Adrenal (pro)renin receptor expression and serum soluble (pro)renin receptor concentration in primary aldosteronism. Int. J. Endocrinol. 2020, 9640103 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  141. M.C. Prieto-Carrasquero, L.M. Harrison-Bernard, H. Kobori, Y. Ozawa, K.S. Hering-Smith, L.L. Hamm, L.G. Navar, Enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats. Hypertension 44, 223–229 (2004)

    Article  CAS  PubMed  Google Scholar 

  142. J.J. Kang, I. Toma, A. Sipos, E.J. Meer, S.L. Vargas, J. Peti-Peterdi, The collecting duct is the major source of prorenin in diabetes. Hypertension 51, 1597–1604 (2008)

    Article  CAS  PubMed  Google Scholar 

  143. H.M. Siragy, J. Huang, Renal (pro)renin receptor upregulation in diabetic rats through enhanced angiotensin AT1 receptor and NADPH oxidase activity. Exp. Physiol. 93, 709–714 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. L. Zhang, X.F. An, X. Ruan, D.D. Huang, L. Zhou, H. Xue, L.M. Lu, M. He, Inhibition of (pro)renin receptor contributes to renoprotective effects of angiotensin II type 1 receptor blockade in diabetic nephropathy. Front. Physiol. 8, 758 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  145. L. Zhou, Y. Li, S. Hao, D. Zhou, R.J. Tan, J. Nie, F.F. Hou, M. Kahn, Y. Liu, Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J. Am. Soc. Nephrol. 26, 107–120 (2015)

    Article  CAS  PubMed  Google Scholar 

  146. Z. Li, L. Zhou, Y. Wang, J. Miao, X. Hong, F.F. Hou, Y. Liu, (Pro)renin receptor is an amplifier of Wnt/β-catenin signaling in kidney injury and fibrosis. J. Am. Soc. Nephrol. 28, 2393–2408 (2017)

  147. F. Wang, Y. Chen, C.J. Zou, R. Luo, T. Yang, Mutagenesis of the cleavage site of prorenin receptor abrogates angiotensin II-induced hypertension in mice. Hypertension 78, 115–127 (2021)

    Article  CAS  PubMed  Google Scholar 

  148. Y. Chen, C. Xu, J. Hu, M. Deng, Q. Qiu, S. Mo, Y. Du, T. Yang, Diuretic action of apelin-13 mediated by inhibiting cAMP/PKA/sPRR pathway. Front. Physiol. 12, 642274 (2020)

    Article  Google Scholar 

  149. A. Berthon, C. Drelon, B. Ragazzon, S. Boulkroun, F. Tissier, L. Amar, B. Samson-Couterie, M.C. Zennaro, P.F. Plouin, S. Skah, M. Plateroti, H. Lefèbvre, I. Sahut-Barnola, M. Batisse-Lignier, G. Assié, A.M. Lefrançois-Martinez, J. Bertherat, A. Martinez, P. Val, WNT/β-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production. Hum. Mol. Genet. 23, 889–905 (2014)

    Article  CAS  PubMed  Google Scholar 

  150. J. Stegbauer, D. Chen, M. Herrera, M.A. Sparks, T. Yang, E. Königshausen, S.B. Gurley, T.M. Coffman, Resistance to hypertension mediated by intercalated cells of the collecting duct. JCI Insight 2, e92720 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  151. A.A. Gonzalez, C. Luffman, C.R. Bourgeois, C.P. Vio, M.C. Prieto, Angiotensin II-independent upregulation of cyclooxygenase-2 by activation of the (Pro)renin receptor in rat renal inner medullary cells. Hypertension 61, 443–449 (2013)

    Article  CAS  PubMed  Google Scholar 

  152. J. Qian, J. Zhong, M. Yan, P. Cheng, H. Shi, C. Hao, Y. Gu, L. Lai, Circulating α-Klotho is related to plasma aldosterone and its follow-up change predicts CKD progression. Kidney Blood Press Res. 43, 836–846 (2018)

    Article  CAS  PubMed  Google Scholar 

  153. A.M. Kamr, K.A. Dembek, B.E. Hildreth 3rd, P.R. Morresey, R.A. Rathgeber, T.A. Burns, A.A. Zaghawa, R.E. Toribio, The FGF-23/klotho axis and its relationship with phosphorus, calcium, vitamin D, PTH, aldosterone, severity of disease, and outcome in hospitalised foals. Equine Vet. J. 50, 739–746 (2018)

    Article  CAS  PubMed  Google Scholar 

  154. X. Zhou, K. Chen, Y. Wang, M. Schuman, H. Lei, Z. Sun, Antiaging gene klotho regulates adrenal CYP11B2 expression and aldosterone synthesis. J. Am. Soc. Nephrol. 27, 1765–1776 (2016)

    Article  CAS  PubMed  Google Scholar 

  155. L. Zhou, H. Mo, J. Miao, D. Zhou, R.J. Tan, F.F. Hou, Y. Liu, Klotho ameliorates kidney injury and fibrosis and normalizes blood pressure by targeting the renin-angiotensin system. Am. J. Pathol. 185, 3211–3223 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. L. Zhou, Y. Li, D. Zhou, R.J. Tan, Y. Liu, Loss of klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. J. Am. Soc. Nephrol. 24, 771–785 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. L. Rabinowitz, Aldosterone and potassium homeostasis. Kidney Int. 49, 1738–1742 (1996)

    Article  CAS  PubMed  Google Scholar 

  158. E.S. Foster, W.J. Jones, J.P. Hayslett, H.J. Binder, Role of aldosterone and dietary potassium in potassium adaptation in the distal colon of the rat. Gastroenterology 88, 41–46 (1985)

    Article  CAS  PubMed  Google Scholar 

  159. B. Stanton, L. Pan, H. Deetjen, V. Guckian, G. Giebisch, Independent effects of aldosterone and potassium on induction of potassium adaptation in rat kidney. J. Clin. Invest. 79, 198–206 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. S. Muto, S. Sansom, G. Giebisch, Effects of a high potassium diet on electrical properties of cortical collecting ducts from adrenalectomized rabbits. J. Clin. Invest. 81, 376–380 (1988)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. C.S. Wingo, D.W. Seldin, J.P. Kokko, H.R. Jacobson, Dietary modulation of active potassium secretion in the cortical collecting tubule of adrenalectomized rabbits. J. Clin. Invest. 70, 579–586 (1982)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. K.P. Tamirisa, K.D. Aaronson, T.M. Koelling, Spironolactone-induced renal insufficiency and hyperkalemia in patients with heart failure. Am. Heart J. 148, 971–978 (2004)

    Article  CAS  PubMed  Google Scholar 

  163. S. Berger, M. Bleich, W. Schmid, T.J. Cole, J. Peters, H. Watanabe, W. Kriz, R. Warth, R. Greger, G. Schütz, Mineralocorticoid receptor knockout mice: pathophysiology of Na+ metabolism. Proc. Natl Acad. Sci. USA 95, 9424–9429 (1998)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  164. M. Bleich, R. Warth, M. Schmidt-Hieber, A. Schulz-Baldes, P. Hasselblatt, D. Fisch, S. Berger, K. Kunzelmann, W. Kriz, G. Schütz, R. Greger, Rescue of the mineralocorticoid receptor knock-out mouse. Pflug. Arch. 438, 245–254 (1999)

    Article  CAS  Google Scholar 

  165. A.S. Terker, B. Yarbrough, M.Z. Ferdaus, R.A. Lazelle, K.J. Erspamer, N.P. Meermeier, H.J. Park, J.A. McCormick, C.L. Yang, D.H. Ellison, Direct and indirect mineralocorticoid effects determine distal salt transport. J. Am. Soc. Nephrol. 27, 2436–2445 (2016)

    Article  CAS  PubMed  Google Scholar 

  166. P. Wu, Z.X. Gao, D.D. Zhang, X.P. Duan, A.S. Terker, D.H. Lin, D.H. Ellison, W.H. Wang, Effect of angiotensin II on ENaC in the distal convoluted tubule and in the cortical collecting duct of mineralocorticoid receptor deficient mice. J. Am. Heart Assoc. 9, e014996 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  167. A. Todkar, N. Picard, D. Loffing-Cueni, M.V. Sorensen, M. Mihailova, V. Nesterov, N. Makhanova, C. Korbmacher, C.A. Wagner, J. Loffing, Mechanisms of renal control of potassium homeostasis in complete aldosterone deficiency. J. Am. Soc. Nephrol. 26, 425–438 (2015)

    Article  PubMed  Google Scholar 

  168. M. Taira, H. Toba, M. Murakami, I. Iga, R. Serizawa, S. Murata, M. Kobara, T. Nakata, Spironolactone exhibits direct renoprotective effects and inhibits renal renin-angiotensin-aldosterone system in diabetic rats. Eur. J. Pharm. 589, 264–271 (2008)

    Article  CAS  Google Scholar 

  169. M.L. Onozato, A. Tojo, N. Kobayashi, A. Goto, H. Matsuoka, T. Fujita, Dual blockade of aldosterone and angiotensin II additively suppresses TGF-beta and NADPH oxidase in the hypertensive kidney. Nephrol. Dial. Transpl. 22, 1314–1322 (2007)

    Article  CAS  Google Scholar 

  170. M. Nagase, S. Shibata, S. Yoshida, T. Nagase, T. Gotoda, T. Fujita, Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension 47, 1084–1093 (2006)

    Article  CAS  PubMed  Google Scholar 

  171. J. Du, Y.Y. Fan, H. Hitomi, H. Kiyomoto, S. Kimura, C.Z. Kong, T. Noma, M. Kohno, A. Nishiyama, D. Nakano, Mineralocorticoid receptor blockade and calcium channel blockade have different renoprotective effects on glomerular and interstitial injury in rats. Am. J. Physiol. Ren. Physiol. 297, F802–F808 (2009)

    Article  CAS  Google Scholar 

  172. S. Bianchi, R. Bigazzi, V.M. Campese, Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int. 70, 2116–2123 (2006)

    Article  CAS  PubMed  Google Scholar 

  173. J.M. Luther, P. Luo, Z. Wang, S.E. Cohen, H.S. Kim, A.B. Fogo, N.J. Brown, Aldosterone deficiency and mineralocorticoid receptor antagonism prevent angiotensin II-induced cardiac, renal, and vascular injury. Kidney Int. 82, 643–651 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. K. Rafiq, D. Nakano, G. Ihara, H. Hitomi, Y. Fujisawa, N. Ohashi, H. Kobori, Y. Nagai, H. Kiyomoto, M. Kohno, A. Nishiyama, Effects of mineralocorticoid receptor blockade on glucocorticoid-induced renal injury in adrenalectomized rats. J. Hypertens. 29, 290–298 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. T. Shimosawa, Salt, the renin-angiotensin-aldosterone system and resistant hypertension. Hypertens. Res. 36, 657–660 (2013)

    Article  CAS  PubMed  Google Scholar 

  176. D.A. Calhoun, D. Jones, S. Textor, D.C. Goff, T.P. Murphy, R.D. Toto, A. White, W.C. Cushman, W. White, D. Sica, K. Ferdinand, T.D. Giles, B. Falkner, R.M. Carey, American Heart Association Professional Education Committee, Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation 117, e510–e526 (2008)

  177. W.B. White, D. Duprez, R. St Hillaire, S. Krause, B. Roniker, J. Kuse-Hamilton, M.A. Weber, Effects of the selective aldosterone blocker eplerenone versus the calcium antagonist amlodipine in systolic hypertension. Hypertension 41, 1021–1026 (2003)

    Article  CAS  PubMed  Google Scholar 

  178. W.B. Lea, E.S. Kwak, J.M. Luther, S.M. Fowler, Z. Wang, J. Ma, A.B. Fogo, N.J. Brown, Aldosterone antagonism or synthase inhibition reduces end-organ damage induced by treatment with angiotensin and high salt. Kidney Int. 75, 936–944 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. M. Lainscak, F. Pelliccia, G. Rosano, C. Vitale, M. Schiariti, C. Greco, G. Speziale, C. Gaudio, Safety profile of mineralocorticoid receptor antagonists: Spironolactone and eplerenone. Int. J. Cardiol. 200, 25–29 (2015)

    Article  PubMed  Google Scholar 

  180. S. Shibata, M. Nagase, S. Yoshida, W. Kawarazaki, H. Kurihara, H. Tanaka, J. Miyoshi, Y. Takai, T. Fujita, Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat. Med. 14, 1370–1376 (2008)

    Article  CAS  PubMed  Google Scholar 

  181. S. Shibata, S. Mu, H. Kawarazaki, K. Muraoka, K. Ishizawa, S. Yoshida, W. Kawarazaki, M. Takeuchi, N. Ayuzawa, J. Miyoshi, Y. Takai, A. Ishikawa, T. Shimosawa, K. Ando, M. Nagase, T. Fujita, Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J. Clin. Invest. 121, 3233–3243 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. M. Nagase, N. Ayuzawa, W. Kawarazaki, K. Ishizawa, K. Ueda, S. Yoshida, T. Fujita, Oxidative stress causes mineralocorticoid receptor activation in rat cardiomyocytes: role of small GTPase Rac1. Hypertension 59, 500–506 (2012)

    Article  CAS  PubMed  Google Scholar 

  183. I.Z. Jaffe, M.E. Mendelsohn, Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ. Res. 96, 643–650 (2005)

    Article  CAS  PubMed  Google Scholar 

  184. I. Mazak, A. Fiebeler, D.N. Muller, J.K. Park, E. Shagdarsuren, C. Lindschau, R. Dechend, C. Viedt, B. Pilz, H. Haller, F.C. Luft, Aldosterone potentiates angiotensin II-induced signaling in vascular smooth muscle cells. Circulation 109, 2792–2800 (2004)

    Article  CAS  PubMed  Google Scholar 

  185. R. Gros, Q. Ding, L.A. Sklar, E.E. Prossnitz, J.B. Arterburn, J. Chorazyczewski, R.D. Feldman, GPR30 expression is required for the mineralocorticoid receptor-independent rapid vascular effects of aldosterone. Hypertension 57, 442–451 (2011)

    Article  CAS  PubMed  Google Scholar 

  186. P. Val, K. Jeays-Ward, A. Swain, Identification of a novel population of adrenal-like cells in the mammalian testis. Dev. Biol. 299, 250–256 (2006)

    Article  CAS  PubMed  Google Scholar 

  187. H. Yokoyama, T. Adachi, K. Tsubouchi, M. Tanaka, H. Sasano, Non-functioning adrenocortical carcinoma arising in an adrenal rest: immunohistochemical study of an adult patient. Tohoku J. Exp. Med. 229, 267–270 (2013)

    Article  PubMed  Google Scholar 

  188. G. Tarçın, O. Ercan, Emergence of ectopic adrenal tissues—what are the probable mechanisms? J. Clin. Res. Pediatr. Endocrinol. 14, 258–266 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank Ms. Huiru Yang for technical assistance.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 32100908 and 82160051), the Jiangxi Provincial Natural Science Foundation (Nos. 20212BAB216005 and 20232BAB206018), PhD Start-up Research Fund in Jiangxi University of Chinese Medicine (No. 2020BSZR009), Jiangxi “Double thousand plan” (No. jxsq2020101074), the science and technology research project in Education Department of Jiangxi Province (No. GJJ2200904), the science and technology research project in Health Commission of Jiangxi Province (No. 202311143), Jiangxi Key Laboratory grant in Science and Technology Department of Jiangxi Province (No. 20202BCD42014), and the Scientific and Technological Innovation Team grant of Jiangxi University of Chinese Medicine (No. CXTD22014).

Author information

Authors and Affiliations

Authors

Contributions

C.X. was the sole author. The author declares that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Chuanming Xu.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C. Extra-adrenal aldosterone: a mini review focusing on the physiology and pathophysiology of intrarenal aldosterone. Endocrine 83, 285–301 (2024). https://doi.org/10.1007/s12020-023-03566-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03566-6

Keywords

Navigation