Skip to main content

Advertisement

Log in

Intestinal Trefoil Factor 3: a new biological factor mediating gut-kidney crosstalk in diabetic kidney disease

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of TFF3 in the pathogenesis of Diabetic Kidney Disease (DKD), and explore the dynamic changes of TFF3 expression pattern in renal injury process.

Methods

DKD animal model was established by streptozotocin (STZ) (40 mg/kg/d, ip, for 5 days, consecutively) combined with the high fat diet (HFD) for 12 weeks. While animals were sacrificed at different time stages in DKD process (4 weeks, 8 weeks and 12 weeks, respectively).

Results

STZ combined with high-fat diet induced weight gain, increased blood glucose and decreased glucose tolerance in DKD mice. Compared to the control group, the DKD group exhibits extracellular matrix (ECM) accumulation and the renal injury was aggravated in a time-dependent manner. The TFF3 expression level was decreased in kidney, and increased in colon tissue.

Conclusion

TFF3 is not only expressed in colon, but also expressed in renal medulla and cortex. TFF3 might be play a pivotal role in renal mucosal repair by gut-kidney crosstalk, and protect renal from high glucose microenvironment damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Sun, P. Saeedi, S. Karuranga et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pr. 183, 109–119 (2022). https://doi.org/10.1016/j.diabres.2021.109119

    Article  Google Scholar 

  2. C. Lin, Y. Hsu, Y. Huang, Y. Shih, C. Wang, W. Chiang, P. Chang, A KDM6A-KLF10 reinforcing feedback mechanism aggravates diabetic podocyte dysfunction. EMBO Mol. Med. 11(5), (2019). https://doi.org/10.15252/emmm.201809828

  3. C.J. May, G.I. Welsh, M. Chesor, P.J. Lait, L.P. Schewitz-Bowers, R.W.J. Lee, M.A. Saleem, Human Th17 cells produce a soluble mediator that increases podocyte motility via signaling pathways that mimic PAR-1 activation. Am. J. Physiol. Ren. Physiol. 317(4), F913–F921 (2019). https://doi.org/10.1152/ajprenal.00093.2019

    Article  CAS  Google Scholar 

  4. Y. Li, Y. Lu, D. Tang et al. Anthocyanin improves kidney function in diabetic kidney disease by regulating amino acid metabolism. J. Transl. Med. 20(1), 510 (2022). https://doi.org/10.1186/s12967-022-03717-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Y. Yang, Z. Lin, Q. Lin, W. Bei, J. Guo, Pathological and therapeutic roles of bioactive peptide trefoil factor 3 in diverse diseases: recent progress and perspective. Cell Death Dis. 13(1), 62 (2022). https://doi.org/10.1038/s41419-022-04504-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. L. Thim, F. May, Structure of mammalian trefoil factors and functional insights. Cell Mol. Life Sci. 62(24), 2956–2973 (2005). https://doi.org/10.1007/s00018-005-5484-6

    Article  CAS  PubMed  Google Scholar 

  7. X. Wu, H. Zheng, R. Yang et al. Mouse trefoil factor 3 ameliorated high-fat-diet-induced hepatic steatosis via increasing peroxisome proliferator-activated receptor-alpha-mediated fatty acid oxidation. Am. J. Physiol. Endocrinol. Metab. 317(3), E436–E445 (2019). https://doi.org/10.1152/ajpendo.00454.2018

    Article  CAS  PubMed  Google Scholar 

  8. J. Zou, Z. Chen, C. Liang et al. Trefoil Factor 3, cholinesterase and homocysteine: potential predictors for parkinson’s disease dementia and vascular parkinsonism dementia in advanced stage. Aging Dis. 9(1), 51–65 (2018). https://doi.org/10.14336/AD.2017.0416

    Article  PubMed  PubMed Central  Google Scholar 

  9. D. Taupin, J. Pedersen, M. Familari, G. Cook, N. Yeomans, A.S. Giraud, Augmented intestinal trefoil factor (TFF3) and loss of pS2 (TFF1) expression precedes metaplastic differentiation of gastric epithelium. Lab. Investig. 81(3), 397–408 (2001). https://doi.org/10.1038/labinvest.3780247

    Article  CAS  PubMed  Google Scholar 

  10. N.M. Belle, Y. Ji, K. Herbine et al. TFF3 interacts with LINGO2 to regulate EGFR activation for protection against colitis and gastrointestinal helminths. Nat. Commun. 10(1), 4408 (2019). https://doi.org/10.1038/s41467-019-12315-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. H. Cui, S. Wang, F. Song et al. CD147 receptor is essential for TFF3-mediated signaling regulating colorectal cancer progression. Signal Transduct. Target Ther. 6(1), 268 (2021). https://doi.org/10.1038/s41392-021-00677-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. T. Du, H. Luo, H. Qin, F. Wang, Q. Wang, Y. Xiang, Y. Zhang, Circulating Serum Trefoil Factor 3 (TFF3) is dramatically increased in chronic kidney disease. PLoS One 8(11), e80271 (2013). https://doi.org/10.1371/journal.pone.0080271

    Article  PubMed  PubMed Central  Google Scholar 

  13. B.R. Griffin, S. Faubel, C.L. Edelstein, Biomarkers of drug-induced kidney toxicity. Ther. Drug Monit. 41(2), 213–226 (2019). https://doi.org/10.1097/FTD.0000000000000589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M.E. Grams, A. Surapaneni, J. Chen et al. Proteins associated with risk of kidney function decline in the general population. J. Am. Soc. Nephrol. 32(9), 2291–2302 (2021). https://doi.org/10.1681/ASN.2020111607

    Article  PubMed  PubMed Central  Google Scholar 

  15. S. Anand, M. Bajpai, T. Khanna, A. Kumar, Influence of genetic polymorphism in renin-angiotensin system-candidate genes on urinary trefoil family factor 3 levels in children with congenital anomalies of kidney and urinary tract. Pediatr. Nephrol. 37(1), 139–145 (2022). https://doi.org/10.1007/s00467-021-05160-2

    Article  PubMed  Google Scholar 

  16. S. Anand, M. Bajpai, T. Khanna, A. Kumar, Urinary biomarkers as point-of-care tests for predicting progressive deterioration of kidney function in congenital anomalies of kidney and urinary tract: trefoil family factors (TFFs) as the emerging biomarkers. Pediatr. Nephrol. 36(6), 1465–1472 (2021). https://doi.org/10.1007/s00467-020-04841-8

    Article  PubMed  Google Scholar 

  17. Y. Yang, H. Tan, X. Zhang et al. The Chinese medicine Fufang Zhenzhu Tiaozhi capsule protects against renal injury and inflammation in mice with diabetic kidney disease. J. Ethnopharmacol. 292, 115–165 (2022). https://doi.org/10.1016/j.jep.2022.115165

    Article  CAS  Google Scholar 

  18. P.M. Titchenell, Q. Chu, B.R. Monks, M.J. Birnbaum, Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nat. Commun. 6, 70–78 (2015). https://doi.org/10.1038/ncomms8078

    Article  CAS  Google Scholar 

  19. L. Xu, X. Li, F. Zhang, L. Wu, Z. Dong, D. Zhang, EGFR drives the progression of AKI to CKD through HIPK2 overexpression. Theranostics 9(9), 2712–2726 (2019). https://doi.org/10.7150/thno.31424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. Li, J. Park, Y. Guan, K. Chung, R. Shrestha, M.B. Palmer, K. Susztak, DNMT1 in Six2 progenitor cells is essential for transposable element silencing and kidney development. J. Am. Soc. Nephrol. 30(4), 594–609 (2019). https://doi.org/10.1681/ASN.2018070687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. L. Marko, E. Vigolo, C. Hinze et al. Tubular Epithelial NF-kappa B activity regulates Ischemic AKI. J. Am. Soc. Nephrol. 27(9), 2658–2669 (2016). https://doi.org/10.1681/ASN.2015070748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J. Ren, L. Han, J. Tang et al. Foxp1 is critical for the maintenance of regulatory T-cell homeostasis and suppressive function. PLoS Biol. 17(5), e3000270 (2019). https://doi.org/10.1371/journal.pbio.3000270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Y. Liu, K. Wang, X. Liang et al. Complement C3 produced by macrophages promotes renal fibrosis via IL-17A secretion. Front. Immunol. 9, 02385 (2018). https://doi.org/10.3389/fimmu.2018.02385

    Article  CAS  Google Scholar 

  24. L. Liu, T. Tao, S. Liu et al. An RFC4/Notch1 signaling feedback loop promotes NSCLC metastasis and stemness. Nat. Commun. 12(1), 2693 (2021). https://doi.org/10.1038/s41467-021-22971-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. U. Erben, C. Loddenkemper, K. Doerfel et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J. Clin. Exp. Pathol. 7(8), 4557–4576 (2014)

    PubMed  PubMed Central  Google Scholar 

  26. T. Yamanari, H. Sugiyama, K. Tanaka et al. Urine trefoil factors as prognostic biomarkers in chronic kidney disease. Biomed. Res. Int. 2018, 3024698 (2018). https://doi.org/10.1155/2018/3024698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. K. Tanaka, H. Sugiyama, T. Yamanari et al. Renal expression of trefoil factor 3 mRNA in association with tubulointerstitial fibrosis in IgA nephropathy. Nephrology 23(9), 855–862 (2018). https://doi.org/10.1111/nep.13444

    Article  CAS  PubMed  Google Scholar 

  28. S. Khummuang, W. Phanphrom, W. Laopajon, W. Kasinrerk, P .Chaiyarit, S. Pata, Production of monoclonal antibodies against human trefoil factor 3 and development of a modified-sandwich ELISA for detection of trefoil factor 3 homodimer in saliva. Biol. Proced. Online. 19(14), (2017). https://doi.org/10.1186/s12575-017-0064-3

  29. Y. Wang, Y. Liang, W. Zhao, G. Fu, Q. Li, X. Min, Y. Guo, Circulating miRNA-21 as a diagnostic biomarker in elderly patients with type 2 cardiorenal syndrome. Sci. Rep. 10(1), 4894 (2020). https://doi.org/10.1038/s41598-020-61836-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. R. Jahan, A. Shah, S.G. Kisling, M.A. Macha, S. Thayer, S.K. Batra, S. Kaur, Odyssey of trefoil factors in cancer: diagnostic and therapeutic implications. Biochim. Biophys. Acta Rev. Cancer 1873(2), 188362 (2020). https://doi.org/10.1016/j.bbcan.2020.188362

    Article  CAS  PubMed  Google Scholar 

  31. F.E.B. May, B.R. Westley, TFF3 is a valuable predictive biomarker of endocrine response in metastatic breast cancer. Endocr. Relat. Cancer 22(3), 465–479 (2015). https://doi.org/10.1530/ERC-15-0129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Y. Yu, H. Jin, D. Holder et al. Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury. Nat. Biotechnol. 28(5), 470–477 (2010). https://doi.org/10.1038/nbt.1624

    Article  CAS  PubMed  Google Scholar 

  33. Y. Xue, L. Shen, Y. Cui et al. Tff3, as a novel peptide, regulates hepatic glucose metabolism. PloS One 8(9), e75240 (2013). https://doi.org/10.1371/journal.pone.0075240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. K. Krueger, S. Schmid, F. Paulsen et al. Trefoil Factor 3 (TFF3) is involved in cell migration for skeletal repair. Int J. Mol. Sci. 20(17), 4277 (2019). https://doi.org/10.3390/ijms20174277

    Article  CAS  Google Scholar 

  35. B.C. Astor, A. Koettgen, S. Hwang, N.A. Bhavsar, C.S. Fox, J. Coresh, Trefoil Factor 3 predicts incident chronic kidney disease: a case-control study nested within the Atherosclerosis Risk in Communities (ARIC) study. Am. J. Nephrol. 34(4), 291–297 (2011). https://doi.org/10.1159/000330699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J. Guo, M. Sun, X. Teng, L. Xu, MicroRNA-7-5p regulates the expression of TFF3 in inflammatory bowel disease. Mol. Med. Rep. 16(2), 1200–1206 (2017). https://doi.org/10.3892/mmr.2017.6730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J. Liu, S.Y. Kim, S. Shin et al. Overexpression of TFF3 is involved in prostate carcinogenesis via blocking mitochondria-mediated apoptosis. Exp. Mol. Med 50(8), 1–11 (2018). https://doi.org/10.1038/s12276-018-0137-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Y. Zhu, S. Zhao, Y. Deng et al. Hepatic GALE regulates whole-body glucose homeostasis by modulating Tff3 expression. Diabetes 66(11), 2789–2799 (2017). https://doi.org/10.2337/db17-0323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author contributions:

T.Z.: Writing, original draft and preparation. Y.H.Z.: Drawing and drafting; J.T.: Formal analysis, Software. X.L.R.: review, editing and Supervision. Y.Q.Y.: Writing, review & editing, Supervision, Conceptualization and Project administration.

Funding

This work was supported by Key Project of National Natural Science Foundation of China (82204704); Basic and Applied Basic Research Special Project, Guangzhou Science and Technology Bureau (SL2024A04J00581).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqi Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

All animal experiments were approved by the Animal Experiment Ethics Committee of Guangdong Pharmaceutical University (gdpulac2019180).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Tao Zhang, Yinghui Zhang

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhang, Y., Tao, J. et al. Intestinal Trefoil Factor 3: a new biological factor mediating gut-kidney crosstalk in diabetic kidney disease. Endocrine 84, 109–118 (2024). https://doi.org/10.1007/s12020-023-03559-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03559-5

Keywords

Navigation