Skip to main content

Advertisement

Log in

Differentiated thyroid cancer: a focus on post-operative thyroid hormone replacement and thyrotropin suppression therapy

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

This review focuses on post-operative thyroid hormone replacement and thyrotropin suppression therapy in patients with differentiated thyroid cancer.

Methods

A clinical review.

Results

Differentiated thyroid cancers (DTC), including papillary and follicular thyroid cancers, have an excellent prognosis and their management leverages a unique set of clinical tools arising from homology to the normal thyroid follicular cell. Surgery is the cornerstone of initial management, and post-operative care often requires thyroid hormone replacement therapy, which may be approached with the intent of physiologic normalization or used pharmacologically to suppress TSH as part of a DTC treatment.

Conclusion

Management of DTC and approaches to TSH suppression are tailored to an individual’s risk of DTC recurrence and are adjusted to a patient’s clinical status and comorbidities over time with the goal of mitigating risk and maximizing benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Pizzato et al. The epidemiological landscape of thyroid cancer worldwide: Globocan estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 10(4), 264–272 (2022)

    Article  PubMed  Google Scholar 

  2. B.R. Haugen et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1), 1–133 (2016)

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  3. L. Davies, H.G. Welch, Current thyroid cancer trends in the United States. JAMA Otolaryngol. Head. Neck Surg. 140(4), 317–322 (2014)

    Article  PubMed  Google Scholar 

  4. S.H. Nam et al. A comparison of the 7th and 8th editions of the AJCC staging system in terms of predicting recurrence and survival in patients with papillary thyroid carcinoma. Oral. Oncol. 87, 158–164 (2018)

    Article  PubMed  Google Scholar 

  5. M. Schlumberger, S. Leboulleux, Current practice in patients with differentiated thyroid cancer. Nat. Rev. Endocrinol. 17(3), 176–188 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. R.M. Tuttle et al. Controversies, consensus, and collaboration in the use of (131) I therapy in differentiated thyroid cancer: a joint statement from the American Thyroid Association, the European Association of nuclear medicine, the society of nuclear medicine and molecular imaging, and the European Thyroid Association. Thyroid 29(4), 461–470 (2019)

    Article  PubMed  Google Scholar 

  7. F. Vaisman et al. Initial therapy with either thyroid lobectomy or total thyroidectomy without radioactive iodine remnant ablation is associated with very low rates of structural disease recurrence in properly selected patients with differentiated thyroid cancer. Clin. Endocrinol. (Oxf.) 75(1), 112–119 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. R.M. Tuttle, L. Zhang, A. Shaha, A clinical framework to facilitate selection of patients with differentiated thyroid cancer for active surveillance or less aggressive initial surgical management. Expert Rev. Endocrinol. Metab. 13(2), 77–85 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. D. De Carlucci Jr et al. Thyroid function after unilateral total lobectomy: risk factors for postoperative hypothyroidism. Arch. Otolaryngol. Head. Neck Surg. 134(10), 1076–1079 (2008)

    Article  PubMed  Google Scholar 

  10. Z. Li et al. Prevalence of and risk factors for hypothyroidism after hemithyroidectomy: a systematic review and meta-analysis. Endocrine 70(2), 243–255 (2020)

    Article  PubMed  Google Scholar 

  11. N. Addasi, A. Fingeret, W. Goldner, Hemithyroidectomy for thyroid cancer: a review. Medicina (Kaunas) 56(11), 586 (2020). https://doi.org/10.3390/medicina56110586

    Article  PubMed  Google Scholar 

  12. M. Wilson et al. Postoperative thyroid hormone supplementation rates following thyroid lobectomy. Am. J. Surg. 220(5), 1169–1173 (2020)

    Article  PubMed  Google Scholar 

  13. S. Park et al. Clinical features of early and late postoperative hypothyroidism after lobectomy. J. Clin. Endocrinol. Metab. 102(4), 1317–1324 (2017)

    Article  PubMed  Google Scholar 

  14. P.R. Larsen, A.M. Zavacki, The role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. Eur. Thyroid J. 1(4), 232–242 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. B. Rousset et al. Chapter 2 Thyroid Hormone Synthesis And Secretion, in Endotext, K.R. Feingold, et al., Editors. 2000, MDText.com, Inc. Copyright © 2000-2023, MDText.com, Inc. South Dartmouth (MA)

  16. P. Colucci et al. A review of the pharmacokinetics of levothyroxine for the treatment of hypothyroidism. Eur. Endocrinol. 9(1), 40–47 (2013)

    PubMed  PubMed Central  Google Scholar 

  17. E.V. Nagy et al. New formulations of levothyroxine in the treatment of hypothyroidism: trick or treat? Thyroid 31(2), 193–201 (2021)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  18. J. Jonklaas et al. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association task force on thyroid hormone replacement. Thyroid 24(12), 1670–1751 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  19. J.G. Watsky, M.A. Koeniger, Prevalence of iatrogenic hyperthyroidism in a community hospital. J. Am. Board Fam. Pr. 11(3), 175–179 (1998)

    Article  CAS  Google Scholar 

  20. S.K. Krishnan et al. High prevalence of iatrogenic hyperthyroidism in elderly patients with atrial fibrillation in an anticoagulation clinic. Mo Med 108(4), 280–283 (2011)

    PubMed  PubMed Central  Google Scholar 

  21. H.B. Burch, Drug effects on the thyroid. N. Engl. J. Med. 381(8), 749–761 (2019)

    Article  CAS  PubMed  Google Scholar 

  22. D.J. Halsall, E. English, V.K. Chatterjee, Interference from heterophilic antibodies in TSH assays. Ann. Clin. Biochem. 46(Pt 4), 345–346 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. W.M. Wiersinga et al. 2012 ETA guidelines: the use of L-T4 + L-T3 in the treatment of hypothyroidism. Eur. Thyroid J. 1(2), 55–71 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  24. E.A. McAninch, A.C. Bianco, The history and future of treatment of hypothyroidism. Ann. Intern Med. 164(1), 50–56 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  25. E.A. McAninch, A.C. Bianco, The swinging pendulum in treatment for hypothyroidism: from (and toward?) combination therapy. Front Endocrinol. (Lausanne) 10, 446 (2019)

    Article  PubMed  Google Scholar 

  26. S.J. Peterson et al. An online survey of hypothyroid patients demonstrates prominent dissatisfaction. Thyroid 28(6), 707–721 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. J. Jonklaas et al. Evidence-based use of levothyroxine/liothyronine combinations in treating hypothyroidism: a consensus document. Thyroid 31(2), 156–182 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M.A. Greer, E.B. Astwood, Treatment of simple goiter with thyroid. J. Clin. Endocrinol. Metab. 13(11), 1312–1331 (1953)

    Article  CAS  PubMed  Google Scholar 

  29. G. Crile Jr, Endocrine dependency of papillary carcinomas of the thyroid. Jama 195(9), 721–724 (1966)

    Article  PubMed  Google Scholar 

  30. H.W. Balme, Metastatic carcinoma of the thyroid successfully treated with thyroxine. Lancet 263(6816), 812–813 (1954)

    Article  Google Scholar 

  31. E.L. Mazzaferri, R.L. Young, Papillary thyroid carcinoma: a 10-year follow-up report of the impact of therapy in 576 patients. Am. J. Med. 70(3), 511–518 (1981)

    Article  CAS  PubMed  Google Scholar 

  32. E.L. Mazzaferri et al. Papillary thyroid carcinoma: the impact of therapy in 576 patients. Med. (Baltim.) 56(3), 171–196 (1977)

    Article  CAS  Google Scholar 

  33. N.J. McGriff et al. Effects of thyroid hormone suppression therapy on adverse clinical outcomes in thyroid cancer. Ann. Med. 34(7-8), 554–564 (2002)

    Article  CAS  PubMed  Google Scholar 

  34. B. Biondi, D.S. Cooper, Thyroid hormone suppression therapy. Endocrinol. Metab. Clin. North Am. 48(1), 227–237 (2019)

    Article  PubMed  Google Scholar 

  35. B. Biondi et al. Cardiac effects of long-term thyrotropin-suppressive therapy with levothyroxine. J. Clin. Endocrinol. Metab. 77(2), 334–338 (1993)

    CAS  PubMed  Google Scholar 

  36. E.N. Klein Hesselink et al. Increased risk of atrial fibrillation after treatment for differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 100(12), 4563–4569 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. N. Pajamaki et al. Long-term cardiovascular morbidity and mortality in patients treated for differentiated thyroid cancer. Clin. Endocrinol. (Oxf.) 88(2), 303–310 (2018)

    Article  PubMed  Google Scholar 

  38. A. Abonowara et al. Prevalence of atrial fibrillation in patients taking TSH suppression therapy for management of thyroid cancer. Clin. Invest. Med. 35(3), E152–E156 (2012)

    Article  PubMed  Google Scholar 

  39. E.N. Klein Hesselink et al. Long-term cardiovascular mortality in patients with differentiated thyroid carcinoma: an observational study. J. Clin. Oncol. 31(32), 4046–4053 (2013)

    Article  PubMed  Google Scholar 

  40. K.A. Heemstra et al. The effects of thyrotropin-suppressive therapy on bone metabolism in patients with well-differentiated thyroid carcinoma. Thyroid 16(6), 583–591 (2006)

    Article  CAS  PubMed  Google Scholar 

  41. M.R. Turner et al. Levothyroxine dose and risk of fractures in older adults: nested case-control study. BMJ 342, d2238 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  42. M.R. Blum et al. Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA 313(20), 2055–2065 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  43. S. Tagay et al. Health-related quality of life, anxiety and depression in thyroid cancer patients under short-term hypothyroidism and TSH-suppressive levothyroxine treatment. Eur. J. Endocrinol. 153(6), 755–763 (2005)

    Article  CAS  PubMed  Google Scholar 

  44. M.H. Samuels et al. The effects of levothyroxine replacement or suppressive therapy on health status, mood, and cognition. J. Clin. Endocrinol. Metab. 99(3), 843–851 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. S. Diessl et al. Impact of moderate vs stringent TSH suppression on survival in advanced differentiated thyroid carcinoma. Clin. Endocrinol. (Oxf.) 76(4), 586–592 (2012)

    Article  CAS  PubMed  Google Scholar 

  46. S. Leboulleux et al. Thyroidectomy without radioiodine in patients with low-risk thyroid cancer. N. Engl. J. Med. 386(10), 923–932 (2022)

    Article  CAS  PubMed  Google Scholar 

  47. A.A. Carhill et al. Long-term outcomes following therapy in differentiated thyroid carcinoma: NTCTCS registry analysis 1987–2012. J. Clin. Endocrinol. Metab. 100(9), 3270–3279 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. G.C. Hovens et al. Associations of serum thyrotropin concentrations with recurrence and death in differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 92(7), 2610–2615 (2007)

    Article  CAS  PubMed  Google Scholar 

  49. L. Bischoff, M.R. Haymart, Optimal thyrotropin following lobectomy for papillary thyroid cancer: does it exist? Thyroid 32(2), 117–118 (2022)

    Article  PubMed  Google Scholar 

  50. M.A. Schumm et al. Frequency of thyroid hormone replacement after lobectomy for differentiated thyroid cancer. Endocr. Pr. 27(7), 691–697 (2021)

    Article  Google Scholar 

  51. J.H. Park et al. The prognostic value of serum thyroid-stimulating hormone level post-lobectomy in low- and intermediate-risk papillary thyroid carcinoma. J. Surgical Oncol. 118(3), 390–396 (2018)

    Article  CAS  Google Scholar 

  52. S. Xu et al. Optimal serum thyrotropin level for patients with papillary thyroid carcinoma after lobectomy. Thyroid 32(2), 138–144 (2022)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  53. M.C. Lee et al. Postoperative thyroid-stimulating hormone levels did not affect recurrence after thyroid lobectomy in patients with papillary thyroid cancer. Endocrinol. Metab. (Seoul.) 34(2), 150–157 (2019)

    Article  CAS  PubMed  Google Scholar 

  54. E.K. Lee et al. A multicenter, randomized, controlled trial for assessing the usefulness of suppressing thyroid stimulating hormone target levels after thyroid lobectomy in low to intermediate risk thyroid cancer patients (MASTER): a study protocol. Endocrinol. Metab. (Seoul.) 36(3), 574–581 (2021)

    Article  CAS  PubMed  Google Scholar 

  55. H.I. Kim et al. Effect of TSH levels during active surveillance of PTMC according to age. Endocr. Relat. Cancer 29(4), 191–200 (2022)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  56. I. Sugitani, Y. Fujimoto, K. Yamada, Association between serum thyrotropin concentration and growth of asymptomatic papillary thyroid microcarcinoma. World J. Surg. 38(3), 673–678 (2014)

    Article  PubMed  Google Scholar 

  57. Y. Ito et al. Thyroid-stimulating hormone, age, and tumor size are risk factors for progression during active surveillance of low-risk papillary thyroid microcarcinoma in adults. World J. Surg. 47(2), 392–401 (2023)

    Article  PubMed  Google Scholar 

  58. H.I. Kim et al. High serum TSH level is associated with progression of papillary thyroid microcarcinoma during active surveillance. J. Clin. Endocrinol. Metab. 103(2), 446–451 (2018)

    Article  PubMed  Google Scholar 

  59. M. Yamamoto, A. Miyauchi, Y. Ito, M. Fujishima, T. Sasaki, T. Kudo, Active Surveillance Outcomes of Patients with Low-Risk Papillary Thyroid Microcarcinoma According to Levothyroxine Treatment Status. Thyroid. 2023. https://doi.org/10.1089/thy.2023.0046. Epub ahead of print

  60. A. Matrone et al. Postoperative thyroglobulin and neck ultrasound in the risk restratification and decision to perform 131I ablation. J. Clin. Endocrinol. Metab. 102(3), 893–902 (2017)

    PubMed  Google Scholar 

  61. M. Mujammami et al. Long-term outcomes of patients with papillary thyroid cancer undergoing remnant ablation with 30 milliCuries radioiodine. Thyroid 26(7), 951–958 (2016)

    Article  CAS  PubMed  Google Scholar 

  62. R. Forleo et al. Minimal extrathyroidal extension in predicting 1-year outcomes: a longitudinal multicenter study of low-to-intermediate-risk papillary thyroid carcinoma (ITCO#4). Thyroid 31(12), 1814–1821 (2021)

    Article  CAS  PubMed  Google Scholar 

  63. V. Harries et al. Does macroscopic extrathyroidal extension to the strap muscles alone affect survival in papillary thyroid carcinoma? Surgery 171(5), 1341–1347 (2022)

    Article  PubMed  Google Scholar 

  64. H. Kim, H. Kwon, B.I. Moon, Association of multifocality with prognosis of papillary thyroid carcinoma: a systematic review and meta-analysis. JAMA Otolaryngol. Head. Neck Surg. 147(10), 847–854 (2021)

    Article  PubMed  Google Scholar 

  65. Z.F. Khan et al. Margin positivity and survival outcomes: a review of 14,471 patients with 1-cm to 4-cm papillary thyroid carcinoma. J. Am. Coll. Surg. 232(4), 545–550 (2021)

    Article  PubMed  Google Scholar 

  66. Y. Tao et al. BRAF V600E status sharply differentiates lymph node metastasis-associated mortality risk in papillary thyroid cancer. J. Clin. Endocrinol. Metab. 106(11), 3228–3238 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  67. M. Papaleontiou et al. Thyrotropin suppression for papillary thyroid cancer: a physician survey study. Thyroid, 2021.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the review conception, outline, and literature review. The first draft of the manuscript was written by Benjamin Gigliotti. Both authors performed editing and read and approved the final manuscript.

Corresponding author

Correspondence to Sina Jasim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gigliotti, B.J., Jasim, S. Differentiated thyroid cancer: a focus on post-operative thyroid hormone replacement and thyrotropin suppression therapy. Endocrine 83, 251–258 (2024). https://doi.org/10.1007/s12020-023-03548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03548-8

Keywords

Navigation