Skip to main content

Advertisement

Log in

Diabetes and ovarian cancer: risk factors, molecular mechanisms and impact on prognosis

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background and aim

Diabetes mellitus has been linked to a lower rate of cancer survival and an increase in the incidence of most malignancies. Investigations showed that diabetes might affect ovarian cancer (OC) prognosis and survival. Based on the current information, this study intends to review the risk factors, molecular pathways, and impact of diabetes on OC.

Methods

The data was derived from online databases, including Web of Science, PubMed, and Scopus. The inclusion criteria were original studies, which included the risk factors, molecular mechanisms, and impact of diabetes on OC. The effect of different antidiabetic drugs was also discussed in this manuscript. All of the clinical, in vivo, and in vitro studies were included in the present study.

Results

The diagnosis of diabetes mellitus negatively affects the survival and prognosis in OC cases. The epidemiologic data shows that the risk of OC increases in patients with diabetes mellitus compared to the healthy population. Insulin-like growth factors family was raised in diabetic patients, which target several mechanisms, including targeting oxidative stress, angiogenesis, and tumor markers. Antidiabetic drugs such as metformin, sitagliptin, and rosiglitazone have a promising effect on elongation of survival and enhancement of prognosis in OC patients.

Conclusions

Diabetes mellitus is a significant risk factor for OC in women, and it negatively impacts survival and prognosis. Molecular mechanisms such as IGF family, oxidative stress, and inflammatory cytokines have been identified to explain this relationship. Antidiabetic drugs like metformin, sitagliptin, and rosiglitazone have shown promise in improving survival and prognosis of OC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated during this study are included in this published article.

References

  1. T. Chowdhury, Diabetes and cancer. QJM Int. J. Med. 103(12), 905–915 (2010).

    Article  CAS  Google Scholar 

  2. I.L. Romero et al. Relationship of type II diabetes and metformin use to ovarian cancer progression, survival, and chemosensitivity. Obstet. Gynecol. 119(1), 61–67 (2012). https://doi.org/10.1097/AOG.0b013e3182393ab3. ppJan

    Article  PubMed  PubMed Central  Google Scholar 

  3. K. Müssig, H.-U. Häring, Insulin signal transduction in normal cells and its role in carcinogenesis. Exp. Clin. Endocrinol. Diabetes 118(06), 356–359 (2010).

    Article  PubMed  Google Scholar 

  4. M. Pollak, Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 8(12), 915–928 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. D.M. Lamkin et al. Glucose as a prognostic factor in ovarian carcinoma. Cancer 115(5), 1021–1027 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. S. Becker, L. Dossus, R. Kaaks, Obesity related hyperinsulinaemia and hyperglycaemia and cancer development. Arch. Physiol. Biochem. 115(2), 86–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. A. Bakhru, R.J. Buckanovich, J.J. Griggs, The impact of diabetes on survival in women with ovarian cancer. Gynecol. Oncol. 121(1), 106–111 (2011). https://doi.org/10.1016/j.ygyno.2010.12.329.

    Article  PubMed  Google Scholar 

  8. L. Wang, L. Zhong, B. Xu, M. Chen, H. Huang, Diabetes mellitus and the risk of ovarian cancer: a systematic review and meta-analysis of cohort and case-control studies. BMJ Open 10(12), e040137 (2020). https://doi.org/10.1136/bmjopen-2020-040137.

    Article  PubMed  PubMed Central  Google Scholar 

  9. J.-Y. Lee, I. Jeon, J.W. Kim, Y.-S. Song, J.-M. Yoon, S.M. Park, Diabetes mellitus and ovarian cancer risk: a systematic review and meta-analysis of observational studies. Int. J. Gynecol. Cancer 23(3), 402–412 (2013). https://doi.org/10.1097/IGC.0b013e31828189b2.

    Article  PubMed  Google Scholar 

  10. H. Mulholland, L. Murray, C. Cardwell, M. Cantwell, Dietary glycaemic index, glycaemic load and endometrial and ovarian cancer risk: a systematic review and meta-analysis. Br. J. Cancer 99(3), 434–441 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D. Zhang, N. Li, Y. Xi, Y. Zhao, T. Wang, Diabetes mellitus and risk of ovarian cancer. A systematic review and meta-analysis of 15 cohort studies. Diabetes Res Clin Pract. 130, 43–52 (2017). https://doi.org/10.1016/j.diabres.2017.04.005.

    Article  PubMed  Google Scholar 

  12. L. Wang, L. Zhong, B. Xu, M. Chen, H. Huang, Diabetes mellitus and the risk of ovarian cancer: a systematic review and meta-analysis of cohort and case–control studies. BMJ Open 10(12), e040137 (2020). 10.1136/bmjopen-2020-040137.

  13. D. LeRoith, J.M.P. Holly, B.E. Forbes, Insulin-like growth factors: ligands, binding proteins, and receptors. Mol. Metab. 52, 101245 (2021). https://doi.org/10.1016/j.molmet.2021.101245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Y.W. Lin, X.F. Weng, B.L. Huang, H.P. Guo, Y.W. Xu, Y.H. Peng, IGFBP-1 in cancer: expression, molecular mechanisms, and potential clinical implications. Am. J. Transl. Res. 13(3), 813–832 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. N. Khanlarkhani et al. Metabolic risk factors of ovarian cancer: a review. JBRA Assist Reprod. 26(2), 335–347 (2022). https://doi.org/10.5935/1518-0557.20210067.

    Article  PubMed  PubMed Central  Google Scholar 

  16. D. Yee, F.R. Morales, T.C. Hamilton, D.D. Von Hoff, Expression of insulin-like growth factor I, its binding proteins, and its receptor in ovarian cancer. Cancer Res. 51(19), 5107–5112 (1991).

  17. W.H. Gotlieb et al. Insulin-like growth factor receptor I targeting in epithelial ovarian cancer. Gynecol. Oncol. 100(2), 389–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. E.P. Beck et al. Identification of insulin and insulin-like growth factor I (IGF I) receptors in ovarian cancer tissue. Gynecol. Oncol. 53(2), 196–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. B. Weigang, M. Nap, A. Bittl, W. Jaeger, Immunohistochemical localization of insulin-like growth factor 1 receptors in benign and malignant tissues of the female genital tract. Tumor Biol. 15(4), 236–246 (1994).

    Article  CAS  Google Scholar 

  20. A. Karasik, J. Menczer, C. Pariente, H. Kanety, Insulin-like growth factor-I (IGF-I) and IGF-binding protein-2 are increased in cyst fluids of epithelial ovarian cancer. J. Clin. Endocrinol. Metab. 78(2), 271–276 (1994).

    CAS  PubMed  Google Scholar 

  21. A. Ouban, P. Muraca, T. Yeatman, D. Coppola, Expression and distribution of insulin-like growth factor-1 receptor in human carcinomas. Human Pathol. 34(8), 803–808 (2003).

    Article  CAS  Google Scholar 

  22. J. Brokaw et al. IGF-I in epithelial ovarian cancer and its role in disease progression. Growth Factors 25(5), 346–354 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. D. Spentzos et al. IGF axis gene expression patterns are prognostic of survival in epithelial ovarian cancer. Endocr. Relat. Cancer 14(3), 781–790 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. R.A. Sayer et al. High insulin-like growth factor-2 (IGF-2) gene expression is an independent predictor of poor survival for patients with advanced stage serous epithelial ovarian cancer. Gynecol. Oncol. 96(2), 355–361 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. L. Lu et al. The relationship of insulin-like growth factor-II, insulin-like growth factor binding protein-3, and estrogen receptor-alpha expression to disease progression in epithelial ovarian cancer. Clin. Cancer Res. 12(4), 1208–1214 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. J. Lancaster et al. High expression of insulin-like growth factor binding protein-2 messenger RNA in epithelial ovarian cancers produces elevated preoperative serum levels. Int. J. Gynecol. Cancer 16(4), 1529–1535 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. A. Flyvbjerg, O. Mogensen, B. Mogensen, O.S. Nielsen, Elevated serum insulin-like growth factor-binding protein 2 (IGFBP-2) and decreased IGFBP-3 in epithelial ovarian cancer: correlation with cancer antigen 125 and tumor-associated trypsin inhibitor. J. Clin. Endocrinol. Metab. 82(7), 2308–2313 (1997).

    CAS  PubMed  Google Scholar 

  28. D. Katsaros et al. IGFBP-3 in epithelial ovarian carcinoma and its association with clinico-pathological features and patient survival. Eur. J. Cancer 37(4), 478–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. P. Torng et al. Insulin-like growth factor binding protein-3 (IGFBP-3) acts as an invasion-metastasis suppressor in ovarian endometrioid carcinoma. Oncogene 27(15), 2137–2147 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. B. Waksmański, J. Dudkiewicz, T. Kowalski, Changes in insulin-like growth factor I, 17-b-estradiol, and progesterone in postmenopausal women with benign and malignant ovarian tumours. Med. Sci. Monit. 7(5), 919–923 (2001).

    PubMed  Google Scholar 

  31. K. Wilson et al. Regulation and function of the extracellular matrix protein tenascin-C in ovarian cancer cell lines. Br. J. Cancer 80(5), 685–692 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M.-R. Shen et al. Insulin-like growth factor 1 stimulates KCl cotransport, which is necessary for invasion and proliferation of cervical cancer and ovarian cancer cells. J. Biol. Chem. 279(38), 40017–40025 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Y. Tanaka, H. Kobayashi, M. Suzuki, Y. Hirashima, N. Kanayama, T. Terao, Genetic downregulation of pregnancy‐associated plasma protein‐A (PAPP‐A) by bikunin reduces IGF‐I‐dependent Akt and ERK1/2 activation and subsequently reduces ovarian cancer cell growth, invasion and metastasis. Int. J. Cancer 109(3), 336–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Z. Cao, L.-Z. Liu, D.A. Dixon, J.Z. Zheng, B. Chandran, B.-H. Jiang, Insulin-like growth factor-I induces cyclooxygenase-2 expression via PI3K, MAPK and PKC signaling pathways in human ovarian cancer cells. Cell. Signal. 19(7), 1542–1553 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. B.R. Whitley, L.M. Beaulieu, J.C. Carter, F.C. Church, Phosphatidylinositol 3-kinase/Akt regulates the balance between plasminogen activator inhibitor-1 and urokinase to promote migration of SKOV-3 ovarian cancer cells. Gynecol. Oncol. 104(2), 470–479 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. W. Kuhn et al. Prognostic significance of urokinase (uPA) and its inhibitor PAI-1 for survival in advanced ovarian carcinoma stage FIGO IIIc. Br. J. Cancer 79(11), 1746–1751 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M.E. van der Burg, S.C. Henzen‐Logmans, E.M. Berns, W.L. van Putten, J.G. Klijn, J.A. Foekens, Expression of urokinase‐type plasminogen activator (uPA) and its inhibitor PAI‐1 in benign, borderline, malignant primary and metastatic ovarian tumors. Int. J. Cancer 69(6), 475–479 (1996).

    Article  PubMed  Google Scholar 

  38. H. Kanety et al. Increased insulin-like growth factor binding protein-2 (IGFBP-2) gene expression and protein production lead to high IGFBP-2 content in malignant ovarian cyst fluid. Br. J. Cancer 73(9), 1069–1073 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. E.-J. Lee et al. Insulin-like growth factor binding protein 2 promotes ovarian cancer cell invasion. Mol. Cancer 4(1), 1–8 (2005).

    Article  Google Scholar 

  40. G.Y. Locker et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J. Clin. Oncol. 24(33), 5313–5327 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. O. Uygur-Bayramicli et al. Type 2 diabetes mellitus and CA 19-9 levels. World J. Gastroenterol. 13(40), 5357–5359 (2007). https://doi.org/10.3748/wjg.v13.i40.5357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Dede, S. Gungor, M. Yenen, I. Alanbay, N. Duru, A. Haşimi, CA19-9 may have clinical significance in mature cystic teratomas of the ovary. Int. J. Gynecol. Cancer 16(1), (2006).

  43. H.Y. Cho, M.S. Kyung, Serum CA19-9 as a predictor of malignancy in primary ovarian mucinous tumors: a matched case-control study. Med. Sci. Monit. 20, 1334–1339 (2014). https://doi.org/10.12659/msm.890954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M. Zhang, B. Zhao, J. Xie, Y. Liang, Z. Yang, Serum human epididymis protein 4 is associated with renal function and diabetic kidney disease in patients with type 2 diabetes mellitus. Biomed. Res. Int. 2019, 4831459 (2019). https://doi.org/10.1155/2019/4831459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. P.F. Li, Y.J. Lin, Y.J. Liang, W.L. Chen, The association between human epididymis secretory protein 4 and metabolic syndrome. J. Clin. Med. 11(9), (2022) https://doi.org/10.3390/jcm11092362.

  46. R. Lugano, M. Ramachandran, A. Dimberg, Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 77(9), 1745–1770 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. S. Reuter, S.C. Gupta, M.M. Chaturvedi, B.B. Aggarwal, Oxidative stress, inflammation, and cancer: how are they linked. Free Radic. Biol. Med. 49(11), 1603–1616 (2010).

  48. S.D. Hursting, N.A. Berger, Energy balance, host-related factors, and cancer progression. J. Clin. Oncol. 28(26), 4058 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. L.D. Kellenberger et al. The role of dysregulated glucose metabolism in epithelial ovarian cancer. J. Oncol. 2010, 514310 (2010). https://doi.org/10.1155/2010/514310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. W. Duan et al. Hyperglycemia, a neglected factor during cancer progression. BioMed Res. Int. 2014, 461917 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. E.J. Gallagher, D. LeRoith, Diabetes, antihyperglycemic medications and cancer risk: smoke or fire?. Curr. Opin. Endocrinol. Diabetes Obes. 20(5), 485–494 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. R.S. Hundal et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49(12), 2063–2069 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. D.R. Morales, A.D. Morris, Metformin in cancer treatment and prevention. Annu. Rev. Med. 66(1), 17–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. B. Viollet, B. Guigas, N.S. Garcia, J. Leclerc, M. Foretz, F. Andreelli, Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. 122(6), 253–270 (2012).

    Article  CAS  Google Scholar 

  55. M. Pollak, The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat. Rev. Cancer 12(3), 159–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Y. Yi, W. Zhang, J. Yi, Z.-X. Xiao, Role of p53 family proteins in metformin anti-cancer activities. J. Cancer 10(11), 2434 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Y. Cui, J. Zhou, F. Rong, Combination of metformin and RG7388 enhances inhibition of growth and induction of apoptosis of ovarian cancer cells through the PI3K/AKT/mTOR pathway. Biochem. Biophys. Res. Commun. 533(4), 665–671 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Y. Fu, Q. Zhang, X. Wang, H. He, Antidiabetic drug metformin mitigates ovarian cancer SKOV3 cell growth by triggering G2/M cell cycle arrest and inhibition of m-TOR/PI3K/Akt signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 21(5), 1169–1175 (2017).

    PubMed  Google Scholar 

  59. N.-Y. Kim, H.-Y. Lee, C. Lee, Metformin targets Axl and Tyro3 receptor tyrosine kinases to inhibit cell proliferation and overcome chemoresistance in ovarian cancer cells. Int. J. Oncol. 47(1), 353–360 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. E. Lengyel et al. Metformin inhibits ovarian cancer growth and increases sensitivity to paclitaxel in mouse models. Am. J. Obstet. Gynecol. 212(4), 479 (2015).

    Article  Google Scholar 

  61. J.H. Dang et al. Metformin in combination with cisplatin inhibits cell viability and induces apoptosis of human ovarian cancer cells by inactivating ERK 1/2. Oncol. Lett. 14(6), 7557–7564 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. R. Erices et al. Diabetic concentrations of metformin inhibit platelet-mediated ovarian cancer cell progression. Oncotarget 8(13), 20865 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. X. Yang et al. Metformin antagonizes ovarian cancer cells malignancy through MSLN mediated IL-6/STAT3 signaling. Cell Transplant. 30, 09636897211027819 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. R. Rattan, R.P. Graham, J.L. Maguire, S. Giri, V. Shridhar, Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo. Neoplasia 13(5), 483–IN28 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. K. Yao, H. Zheng, T. Li, Association between metformin use and the risk, prognosis of gynecologic cancer. Front. Oncol. 12, 942380 (2022). https://doi.org/10.3389/fonc.2022.942380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Y. Zheng, J. Zhu, H. Zhang, Y. Liu, H. Sun, Metformin plus first-line chemotherapy versus chemotherapy alone in the treatment of epithelial ovarian cancer: a prospective open-label pilot trial. Cancer Chemother. Pharmacol. 84(6), 1349–1357 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. M.R. Khawaja et al. Phase I dose escalation study of temsirolimus in combination with metformin in patients with advanced/refractory cancers. Cancer Chemother. Pharmacol. 77(5), 973–977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. J.R. Brown et al., Phase II clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer. JCI Insight 5(11) (2020). https://doi.org/10.1172/jci.insight.133247.

  69. M. Jensterle, A. Janez, B. Mlinar, J. Marc, J. Prezelj, M. Pfeifer, Impact of metformin and rosiglitazone treatment on glucose transporter 4 mRNA expression in women with polycystic ovary syndrome. Eur. J. Endocrinol. 158(6), 793–801 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. S.J. Lessard et al. Rosiglitazone enhances glucose tolerance by mechanisms other than reduction of fatty acid accumulation within skeletal muscle. Endocrinology 145(12), 5665–5670 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. A. Aljada, L. O’Connor, Y.-Y. Fu, S.A. Mousa, PPARγ ligands, rosiglitazone and pioglitazone, inhibit bFGF-and VEGF-mediated angiogenesis. Angiogenesis 11(4), 361–367 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. H. Zhang et al. Suppression of multidrug resistance by rosiglitazone treatment in human ovarian cancer cells through downregulation of FZD1 and MDR1 genes. Anticancer Drugs 26(7), 706–715 (2015). https://doi.org/10.1097/cad.0000000000000236.

    Article  CAS  PubMed  Google Scholar 

  73. T. Nargis, P. Chakrabarti, Significance of circulatory DPP4 activity in metabolic diseases. IUBMB Life 70(2), 112–119 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. A. Kosowska, et al., Sitagliptin modulates the response of ovarian cancer cells to chemotherapeutic agents. Int. J. Mol. Sci. 21(23), 8976 (2020). https://www.mdpi.com/1422-0067/21/23/8976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Behbahan Faculty of Medical Sciences for financial support.

Funding

This research was supported by the Behbahan Faculty of Medical Sciences (Grant # 401044) and F.K. has received research support from Behbahan Faculty of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

F.K. contributed to the study conception and design. The first draft of the manuscript was written by F.K. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Farzaneh Karimi or Mostafa Moazamfard.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, F., Dinarvand, N., Sabaghan, M. et al. Diabetes and ovarian cancer: risk factors, molecular mechanisms and impact on prognosis. Endocrine 83, 1–9 (2024). https://doi.org/10.1007/s12020-023-03477-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03477-6

Keywords

Navigation