Skip to main content
Log in

Acute iv CRH administration significantly increases serum active ghrelin in postmenopausal PCOS women compared to postmenopausal controls

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

In women with Polycystic Ovarian Syndrome (PCOS), an increased risk of disordered eating has been described. There is growing interest regarding a possible interconnection between psychological states and increased appetite in women with PCOS. Acute stress is characterized by increased Corticotropin Releasing Hormone (CRH) secretion. The aim was to estimate the ghrelin concentrations during CRH test.

Methods

Twenty postmenopausal women with PCOS and twenty age- and BMI- matched postmenopausal control women were recruited at Aretaieion University Hospital. In the morning (9 am) all subjects had anthropometric measurements (weight, height, waist circumference) and a fasting sample for hormonal measurements. An intravenous (iv) CRH stimulation test conducted over 1 min. Serum active ghrelin levels were measured at 0, 15, 30, 60, 90, 120 min after iv CRH administration.

Results

The postmenopausal PCOS group had a higher waist circumference compared to postmenopausal controls. Active ghrelin concentrations increased significantly from 0 to 15 min, to 30 min, to 60 min, to 90 min and then decreased to 120 min. However, within the postmenopausal control group there were no significant changes in serum active ghrelin levels. Serum active ghrelin concentrations were significantly greater in the postmenopausal control group at 0, 15 and 120 min compared to the postmenopausal PCOS group. At 90 min active ghrelin concentrations were significantly greater in the postmenopausal PCOS group. Delta Area Under the Curve of active ghrelin (ΔAUCghr) was significantly greater in the postmenopausal PCOS group compared to controls.

Conclusions

In postmenopausal PCOS, but not in postmenopausal controls, iv CRH administration induces increased serum active ghrelin secretion, suggesting a possible anti-stress adaptive mechanism. An increase in serum active ghrelin may induce hunger as a side-effect of this presumed adaptive mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. N.F. Goodman, R.H. Cobin, W. Futterweit, J.S. Glueck, R.S. Legro, E. Carmina, American Association of Clinical Endocrinologists (AACE); American College of Endocrinology (ACE); Androgen Excess and PCOS Society (AES). Clinical guide to the best practices in the evaluation and treatment of Polycystic Ovary Syndrome. Endocr. Pract. 21, 1291–300 (2015)

    Article  PubMed  Google Scholar 

  2. I. Lee, L.G. Cooney, S. Saini, M.E. Smith, M.D. Samel, K.C. Allison, A. Dokras, Increased risk of disordered eating in polycystic ovary syndrome. Fertil. Steril. 107, 796–802 (2017)

    Article  PubMed  Google Scholar 

  3. Bear MH, Reddy V, Bollu PC: Neuroanatomy, Hypothalamus. In: Stat pearls. Treasure Island (FL): StatPearls Publishing (2022).

  4. D. Barlampa, M.S. Bompoula, A. Bargiota, S. Kalantaridou, G. Mastorakos, G. Valsamakis, Hypothalamic Inflammation as a Potential Pathophysiologic Basis for the Heterogeneity of Clinical, Hormonal, and Metabolic Presentation in PCOS. Nutr 13, 520 (2021)

    CAS  Google Scholar 

  5. M.A. Charifson, B.C. Trumble, Evolutionary origins of polycystic ovary syndrome: An environmental mismatch disorder. Evol. Med. Public Health 1, 50–63 (2019)

    Article  Google Scholar 

  6. S. Benson, P.C. Arck, S. Tan, S. Hahn, K. Mann, K. Rifaie, O.E. Janssen, M. Schedlowski, S. Elsenbruch, Disturbed stress responses in women with polycystic ovary syndrome. Psychoneuroendocrinol 34, 727–735 (2009)

    Article  CAS  Google Scholar 

  7. A.L. Damone, J.D. Loxton, A. Earnest, L.J. Moran, Depression, anxiety and perceived stress in women with and without PCOS: A community-based study. Psychol. Med. 49, 1510–1520 (2019)

    Article  PubMed  Google Scholar 

  8. J.S. Kim, S.Y. Han, K.J. Iremonger, Stress experience and hormone feedback tune distinct components of hypothalamic CRH neuron activity. Nat. Commun. 10, 5696 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S.C. Weninger, A.J. Dunn, L.J. Muglia, P. Dikkes, K.A. Miczek, A.H. Swiergiel, C.W. Berridge, J.A. Majzoub, Stress-induced behaviors require the corticotropin-releasing hormone (CRH) receptor, but not CRH. PNAS 96, 8283–8288 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. B.R. Basu, O. Chowdhury, S.K. Saha, Possible Link Between Stress-related Factors and Altered Body. J. Hum. Reprod. Sci. 11, 10–18 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. L.J. Moran, M. Noakes, P.M. Clifton, G.A. Wittert, L. Tomlinson, C. Galletly, N.D. Luscombe, R.J. Norman, Ghrelin and measures of satiety are altered in polycystic ovary syndrome but not differentially affected by diet composition. J. Clin. Endocrinol. Metab. 89, 3337–44 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. H.J. Teede, A.E. Joham, E. Paul, L.J. Moran, D. Loxton, D. Jolley, C. Lombard, Longitudinal weight gain in women identified with polycystic ovary syndrome: results of an observational study in young women. Obesity 21, 1526–32 (2013)

    Article  PubMed  Google Scholar 

  13. D. Glintborg, A. Houborg, M. Petersen, P. Ravn, A.P. Hermann, M. Andersen, Comparison of regional fat mass measurement by whole body DXA scans and anthropometric measures to predict insulin resistance in women with polycystic ovary syndrome and controls. Acta Obstet. Gynecol. Scan. 95, 1235–1243 (2016)

    Article  CAS  Google Scholar 

  14. L. Hajivandi, M. Noroozi, F. Mostafavi, M. Ekramzadeh, Food habits in overweight and obese adolescent girls with Polycystic ovary syndrome (PCOS): a qualitative study in Iran. BMC Pediatr. 20, 277 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  15. G. Muccioli, M. Tschop, M. Pappoti, R. Deghenghi, E. Ghigo, Neuroendocrine and peripheral activities of ghrelin: Implications in metabolism and obesity. Eur. J. Pharmacol. 440, 235–254 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. C. Schöfl, R. Horn, T. Schill, H.W. Schlösser, M.J. Müller, G. Brabant, Circulating ghrelin levels in patients with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 87, 4607–4610 (2002)

    Article  PubMed  Google Scholar 

  17. J. Rodin, Insulin levels, hunger, and food intake: An example of feedback loops in body weight regulation. Health Psychol. 4, 1–24 (1985)

    Article  CAS  PubMed  Google Scholar 

  18. A. Tchernof, J. Calles-Escandon, C.K. Sites, E.T. Poehlman, Menopause, central body fatness, and insulin resistance: effects of hormone-replacement therapy. Coron. Arter. Dis. 9, 503–11 (1998)

    Article  CAS  Google Scholar 

  19. M. Markopoulos, G. Valsamakis, E. Kouskouni, A. Boutsiadis, I. Papassotiriou, G. Creatsas, G. Mastorakos, Study of carbohydrate metabolism indices and adipocytokine profile and their relationship with androgens in polycystic ovary syndrome after menopause. Eur. J. Endocrinol. 168, 83–90 (2012)

    Article  PubMed  Google Scholar 

  20. D.H. St Pierre, A.D. Karelis, L. Coderre, F. Marita, J. Fontaine, D. Mignault, M. Brochu, J.P. Bastard, K. Cianflone, E. Doucet, P. Imbeault, R. Lauret, Association of acylated and nonacylated ghrelin with insulin sensitivity in overweight and obese postmenopausal women. J. Clin. Endocrinol. Metab. 92, 264–269 (2007)

    Article  Google Scholar 

  21. A. Gambineri, C. Pelusi, V. Vicennati, U. Pagotto, R. Pasquali, Obesity and the polycystic ovary syndrome. Int. J. Obes. 26, 883–896 (2002)

    Article  CAS  Google Scholar 

  22. R. Azziz, Controversy in clinical endocrinology: diagnosis of polycystic ovary syndrome: The Rotterdam criteria are premature. J. Clin. Endocrinol. Metab. 91, 781–5 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. T.M. Wallace, J.C. Levy, D.R. Matthews, Use and abuse of HOMA modeling. Diab. Care 27, 1487–1495 (2004)

    Article  Google Scholar 

  24. G.P. Chrousos, H.M. Schulte, E.H. Oldfield, P.W. Gold, G.B. Cutler Jr, D.L. Loriaux, The corticotropin-releasing factor stimulation test. An aid in the evaluation of patients with Cushing’s. N. Engl. J. Med. 310, 622–626 (1984)

    Article  CAS  PubMed  Google Scholar 

  25. D. Falconnet, J. She, R. Tornay, E. Leimgruber, D. Bernasconi, L. Lagopoulos, P. Renaud, N. Demierre, P. van den Bogaard, Rapid, sensitive and real-time multiplexing platform for the analysis of protein and nucleic-acid biomarkers. Anal. Chem. 3(87), 1582–1589 (2015)

    Article  Google Scholar 

  26. S.A. Dunbar, Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin. Chim. Acta 363, 71–82 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. L. Chang, The role of stress on physiologic responses and clinical symptoms in irritable bowel syndrome. Gastroenterol 140, 761–5 (2011)

    Article  Google Scholar 

  28. A. Stengel, Y. Trache, Corticotropin-releasing factor signaling and visceral response to stress. Exp. Biol. Med. 235, 1168–78 (2010)

    Article  CAS  Google Scholar 

  29. S. Fukudo, J. Suzuki, Colonic motility, autonomic function and gastrointestinal hormones under psychological stress on irritable bowel syndrome. Tohuku J. Exp. Med. 151, 373–385 (1987)

    Article  CAS  Google Scholar 

  30. Furman B. Corticotropin Releasing Factor. xPharm The Comprehensive Pharmacology Reference 1–4 (2007)

  31. F.M. Dautzenberg, R.L. Hauger, The CRF peptide family and their receptors: yet more partners discovered. Trends Pharm. 23, 71–7 (2002)

    Article  CAS  Google Scholar 

  32. S. Liu, W. Ren, M.H. Qu, G.A. Bishop, G.D. Wang, X.Y. Wang, Y. Xia, J.D. Wood, Expression of type 1 corticotropin –releasing factor receptor in the guinea pig enteric nervous system. J. Comp. Neurol. 481, 284–298 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. E. Chatzaki, B.J. Murphy, L. Wang, M. Million, G.V. Ohning, P.D. Crowe, R. Petroski, Y. Tache, D.E. Grigoriadis, Differential profile of CRF receptor distribution in the rat stomach and duodenum assessed by newly developed CRF receptor antibodies. J. Neurochem. 88, 1–11 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. E. Chatzaki, M. Lambropoulou, T.C. Constantinidis, N. Papadopoulos, Y. Tache, G. Minopoulos, D.E. Grigoriadis, Corticotropin releasing factor receptor type 2 in the human stomach: protective biological role by inhibition of apoptosis. J. Cell Physiol. 209, 905–911 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. C. Porcher, A. Peinnequin, S. Pelissier, J. Meregnani, V. Sinniger, F. Canini, B. Bonaz, Endogenous expression and in vitro study of CRF related peptides and CRF receptors in the rat gastric antrum. Peptides 27, 1464–1475 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. R.R. Banerjee, S.M. Rangwala, J.S. Shapiro, Regulation of fasted blood glucose by resistin. Sci 303, 1195–8 (2004)

    Article  CAS  Google Scholar 

  37. R. Kimura, D. Kondo, S. Takemi, M. Fujishiro, S. Tsukahara, T. Sakai, I. Sakata, The role of central corticotrophin –releasing factor receptor signaling in plasma glucose maintenance through ghrelin secretion in calorie restricted mice. J. Neuroendocrinol. 33, e 12961 (2021). 10.111/jne.12961

    Article  CAS  Google Scholar 

  38. E. Kristensson, M. Sundqvist, M. Astin, M. Kjerling, H. Mattsson, C. Dornonville De La Cour, Acute psychological stress raises plasma ghrelin in the rat. Regul. Pept. 134, 114–117 (2006)

    Article  Google Scholar 

  39. M.V. Schmidt, S. Levine, S. Alam, D. Harbich, V. Sterlemann, K. Ganea, E.R. de Kloet, F. Holsboer, M.V. Muller, Metabolic signals modulate hypothalamic-pituitary-adrenal axis activation during maternal separation of the neonatal mouse. J. Neuroendocrinol. 18, 865–874 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. U. Pagotto, A. Gambineri, V. Vicennati, M.L. Heiman, M. Tschop, R. Pasquali, Plasma ghrelin obesity and the polycystic ovary syndrome: correlation with insulin resistance and androgen levels. J. Clin. Endocrinol. Metab. 87, 5625–5629 (2002)

    Article  CAS  PubMed  Google Scholar 

  41. T. Shiiya, M. Nakazato, M. Mizuta, Y. Date, M.S. Mondal, M. Tanaka, S. Nozoe, K. Kangawa, S. Matsukura, Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J. Clin. Endocrinol. Metab. 87, 240–244 (2002)

    Article  CAS  PubMed  Google Scholar 

  42. T.M. Barber, F.F. Casanueva, M. Lage, S. Franks, M.I. McCarthy, J.A.H. Wass, Ghrelin is reduced in women with polycystic ovary syndrome and correlates inversely with HOMA IR and testosterone. Endocr. Abstr. 13, 254 (2007)

    Google Scholar 

  43. A. Pavicic, D. Baldani, L. Srgatic, M. Kasum, G. Zlopasa, S. Oguis, M. Herman, Altered leptin, adiponectin, resistin and ghrelin secretion may represent an intrinsic polycystic ovary syndrome abnormality. Gynecol. Endocrinol. 35, 401–405 (2019)

    Article  Google Scholar 

  44. T. Gao, L. Wu, F. Chang, G. Cao, Low circulating ghrelin levels in women with polycystic ovary syndrome: A systematic review and meta-analysis. Endocr. J. 63, 93–100 (2016)

    Article  CAS  PubMed  Google Scholar 

  45. P. Marzullo, B. Verti, G. Savia, G.E. Walker, G. Guzzaloni, M. Tagliaferri, A. Di Blasio, A. Liuzzi, The Relationship between active ghrelin levels and human obesity involves alterations in resting energy expenditure. J. Clin. Endocrinol. Metab. 89, 936–939 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. K. Raspopow, A. Abizaid, K. Matheson, H. Anisman, Psychosocial stressor effects on cortisol and ghrelin in emotional and non-emotional eaters: influence of anger and shame. Horm. Behav. 58, 677–684 (2010)

    Article  CAS  PubMed  Google Scholar 

  47. P. Monteleone, A. Tortorella, P. Scognamiglio, I. Serino, A.M. Monteleone, M. Maj, The acute salivary ghrelin response to a psychosocial stress is enhanced in symptomatic patients with bulimia nervosa: a pilot study. Neuropsychobiol 66, 230–236 (2012)

    Article  CAS  Google Scholar 

  48. S.J. Spencer, L. Xu, M.A. Clarke, M. Lemus, A. Reichenbach, B. Geenen, T. Kozicz, J.B. Anrews, Ghrelin regulates the Hypothalamic-Pituitary-Adrenal axis and restrict s anxiety after acute stress. Biol. Psychiatry 72, 457–465 (2012)

    Article  CAS  PubMed  Google Scholar 

  49. M. Lutter, I. Sakata, L.S. Osborne, S.A. Rovinsky, J.G. Andersson, S. Jung, S. Birnbaum, M. Yanagisawa, J.K. Elmquist, E.J. Nestler, J.M. Zigman, Nat. Neurosci. 11, 752–753 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. M.A. Hedegaard, B. Holst, The complex signaling pathways of the ghrelin receptor. Endocrinol 161, 4 (2020)

    Article  Google Scholar 

  51. C. Hansson, M. Alvarez-Crespo, M. Taube, K.P. Skibicka, L. Schmidt, L. Karlsson-Lindahl et al. Influence of ghrelin on the central serotonergic signaling system in mice. Neuropharmacology 79, 498–505 (2014). (2014)

    Article  CAS  PubMed  Google Scholar 

  52. A. Kawakami, N. Okada, K. Rokkaku, K. Honda, S. Ishibashi, T. Onaka, Leptin inhibits and ghrelin augments hypothalamic noradrenaline release after stress. Stress 11, 363–369 (2008)

    Article  CAS  PubMed  Google Scholar 

  53. I. Merchenthaler, M.A. Hynes, S. Vigh, A.V. Schally, P. Petrusz, Immunocytochemical localization of corticotropin releasing factor (CRF) in the rat spinal cord. Brain Res. 275, 373–377 (1983)

    Article  CAS  PubMed  Google Scholar 

  54. R. Udelsman, J.P. Harwood, M.A. Millan, G.P. Chrousos, G.S. Goldstein, R. Zimlichman, K.J. Catt, G. Aguilera, Functional corticotropin releasing factor receptors in the primate peripheral sympathetic nervous system. Nat. (Lond.) 319, 147–150 (1986)

    Article  CAS  Google Scholar 

  55. R.J. Valentino, L.A. Pavcovich, H. Hirata, Evidence for corticotropin-releasing hormone projections from Barrington’s nucleus to the periaqueductal gray and dorsal motor nucleus of the vagus in the rat. J. Comp. Neurol. 18(363), 402–22 (1995)

    Article  Google Scholar 

Download references

Funding

This work received fund (No 1535, to G.M.) by the Ethnikon and Kapodistriakon University of Athens.

Author information

Authors and Affiliations

Authors

Contributions

M.M. data collection and methodology. T.M.B. and S.K.: critical revision, design. A.B.: analysis of data, design. C.S., and I.P.: analysis of data. N.F.V.: final approval. G.M.: critical review, design, resources. G.V.: conceptualization, design, interpretation, drafting, final approval.

Corresponding author

Correspondence to Georgios Valsamakis.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This study was performed in line with principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee Aretaieion University Hospital Ethnikon and Kapodistriakon University of Athens (1535, Aretaieion Hospital, June 2011).

Consent to publish

All subjects signed written informed consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markopoulos, M., Barber, T.M., Bargiota, A. et al. Acute iv CRH administration significantly increases serum active ghrelin in postmenopausal PCOS women compared to postmenopausal controls. Endocrine 81, 613–620 (2023). https://doi.org/10.1007/s12020-023-03406-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03406-7

Keywords

Navigation