Skip to main content
Log in

Association of activins, follistatins and inhibins with incident hip fracture in women with postmenopausal osteoporosis: a proof of concept, case–control study

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

The activins-follistatins-inhibins (AFI) hormonal system is considered to regulate muscle and bone mass. We aimed to evaluate AFI in postmenopausal women with an incident hip fracture.

Methods

In this post-hoc analysis of a hospital based case-control study, we evaluated circulating levels of the AFI system in postmenopausal women with a low-energy hip fracture admitted for fixation compared with postmenopausal women with osteoarthritis scheduled for arthroplasty.

Results

Circulating levels of follistatin (p = 0.008), FSTL3 (p = 0.013), activin B and AB (both p < 0.001), as well as activin AB/follistatin and activin AB/FSTL3 ratios (p = 0.008 and p = 0.029, respectively) were higher in patients than controls in unadjusted models. Differences for activins B and AB remained after adjustment for age and BMI (p = 0.006 and p = 0.009, respectively) and for FRAX-based risk for hip fracture (p = 0.008 and p = 0.012, respectively) but were lost when 25OHD was added to the regression models.

Conclusions

Our data indicate no major changes in the AFI system in postmenopausal women at the time of hip fracture compared to postmenopausal women with osteoarthritis except for higher activin B and AB levels, whose significance, however, was lost when 25OHD was added to the adjustment models.

Clinical Trials

Clinical Trials identifier: NCT04206618.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data will be available upon reasonable request.

References

  1. L. Bonewald, Use it or lose it to age: a review of bone and muscle communication. Bone 120, 212–218 (2019). https://doi.org/10.1016/j.bone.2018.11.002

    Article  PubMed  Google Scholar 

  2. M. Bowser, S. Herberg, P. Arounleut, X. Shi, S. Fulzele, W.D. Hill, C.M. Isales, M.W. Hamrick, Effects of the activin A-myostatin-follistatin system on aging bone and muscle progenitor cells. Exp. Gerontol. 48(2), 290–297 (2013). https://doi.org/10.1016/j.exger.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  3. A.D. Anastasilakis, S.A. Polyzos, N.E. Rodopaios, P. Makras, A. Kumar, B. Kalra, C.S. Mantzoros, Activins, follistatins and inhibins in postmenopausal osteoporosis: A proof of concept, case-control study. Metabolism 141, 155397 (2022). https://doi.org/10.1016/j.metabol.2022.155397

    Article  CAS  PubMed  Google Scholar 

  4. A.D. Anastasilakis, S.A. Polyzos, D. Kitridis, P. Makras, M.P. Yavropoulou, A. Palermo, S. Gerou, C. Ntenti, I. Ballaouri, M. Savvidis, Ιrisin levels in postmenopausal women with an incident hip fracture. Endocrine 73(3), 719–722 (2021). https://doi.org/10.1007/s12020-021-02738-6

    Article  CAS  PubMed  Google Scholar 

  5. S. Inoue, S. Nomura, T. Hosoi, Y. Ouchi, H. Orimo, M. Muramatsu, Localization of follistatin, an activin-binding protein, in bone tissues. Calcif. Tissue Int. 55(5), 395–397 (1994). https://doi.org/10.1007/bf00299321

    Article  CAS  PubMed  Google Scholar 

  6. T. Shuto, G. Sarkar, J.T. Bronk, N. Matsui, M.E. Bolander, Osteoblasts express types I and II activin receptors during early intramembranous and endochondral bone formation. J. Bone Min. Res. 12(3), 403–411 (1997). https://doi.org/10.1359/jbmr.1997.12.3.403

    Article  CAS  Google Scholar 

  7. T. Nagamine, T. Imamura, Y. Ishidou, M. Kato, F. Murata, P. ten Dijke, T. Sakou, Immunohistochemical detection of activin A, follistatin, and activin receptors during fracture healing in the rat. J. Orthop. Res. 16(3), 314–321 (1998). https://doi.org/10.1002/jor.1100160307

    Article  CAS  PubMed  Google Scholar 

  8. M. Fajardo, C.J. Liu, K. Egol, Levels of expression for BMP-7 and several BMP antagonists may play an integral role in a fracture nonunion: a pilot study. Clin. Orthop. Relat. Res. 467(12), 3071–3078 (2009). https://doi.org/10.1007/s11999-009-0981-9

    Article  PubMed  PubMed Central  Google Scholar 

  9. R. Sakai, K. Miwa, Y. Eto, Local administration of activin promotes fracture healing in the rat fibula fracture model. Bone 25(2), 191–196 (1999). https://doi.org/10.1016/s8756-3282(99)00152-0

    Article  CAS  PubMed  Google Scholar 

  10. A. Morse, T.L. Cheng, L. Peacock, K. Mikulec, D.G. Little, A. Schindeler, RAP-011 augments callus formation in closed fractures in rats. J. Orthop. Res. 34(2), 320–330 (2016). https://doi.org/10.1002/jor.22985

    Article  CAS  PubMed  Google Scholar 

  11. B.H. Yoon, L. Esquivies, C. Ahn, P.C. Gray, S.K. Ye, W. Kwiatkowski, S. Choe, An activin A/BMP2 chimera, AB204, displays bone-healing properties superior to those of BMP2. J. Bone Min. Res. 29(9), 1950–1959 (2014). https://doi.org/10.1002/jbmr.2238

    Article  CAS  Google Scholar 

  12. L.B. Tankó, J. Goldhahn, A. Varela, E. Lesage, S.Y. Smith, A. Pilling, S. Chivers, Does activin receptor blockade by bimagrumab (BYM338) pose detrimental effects on bone healing in a rat fibula osteotomy model. Calcif. Tissue Int. 99(3), 310–321 (2016). https://doi.org/10.1007/s00223-016-0148-0

    Article  CAS  PubMed  Google Scholar 

  13. L.C. Hofbauer, R. Witvrouw, Z. Varga, N. Shiota, M. Cremer, L.B. Tanko, D. Rooks, L.Z. Auberson, M. Arkuszewski, N. Fretault, A.A. Schubert-Tennigkeit, D.A. Papanicolaou, C. Recknor, Bimagrumab to improve recovery after hip fracture in older adults: a multicentre, double-blind, randomised, parallel-group, placebo-controlled, phase 2a/b trial. Lancet Healthy Longev. 2(5), e263–e274 (2021). https://doi.org/10.1016/s2666-7568(21)00084-2

    Article  PubMed  Google Scholar 

  14. T.T. Wang, L.E. Tavera-Mendoza, D. Laperriere, E. Libby, N.B. MacLeod, Y. Nagai, V. Bourdeau, A. Konstorum, B. Lallemant, R. Zhang, S. Mader, J.H. White, Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol. Endocrinol. 19(11), 2685–2695 (2005). https://doi.org/10.1210/me.2005-0106

    Article  CAS  PubMed  Google Scholar 

  15. J. Okabe-Kado, Y. Honma, M. Hayashi, M. Hozumi, Effects of transforming growth factor-beta and activin A on vitamin D3-induced monocytic differentiation of myeloid leukemia cells. Anticancer Res. 11(1), 181–186 (1991)

    CAS  PubMed  Google Scholar 

  16. T. Nagasaki, M. Hino, M. Inaba, Y. Nishizawa, H. Morii, S. Otani, Inhibition by 1alpha,25-dihydroxyvitamin D3 of activin A-induced differentiation of murine erythroleukemic F5-5 cells. Arch. Biochem Biophys. 343(2), 181–187 (1997). https://doi.org/10.1006/abbi.1997.0152

    Article  CAS  PubMed  Google Scholar 

  17. V.J. Woeckel, B.C. van der Eerden, M. Schreuders-Koedam, M. Eijken, J.P. Van Leeuwen, 1α,25-dihydroxyvitamin D3 stimulates activin A production to fine-tune osteoblast-induced mineralization. J. Cell Physiol. 228(11), 2167–2174 (2013). https://doi.org/10.1002/jcp.24388

    Article  CAS  PubMed  Google Scholar 

  18. J. Nam, P. Perera, R. Gordon, Y.H. Jeong, A.D. Blazek, D.G. Kim, B.C. Tee, Z. Sun, T.D. Eubank, Y. Zhao, B. Lablebecioglu, S. Liu, A. Litsky, N.L. Weisleder, B.S. Lee, T. Butterfield, A.L. Schneyer, S. Agarwal, Follistatin-like 3 is a mediator of exercise-driven bone formation and strengthening. Bone 78, 62–70 (2015). https://doi.org/10.1016/j.bone.2015.04.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the work: A.D.A., M.S., C.S.M. Acquisition, analysis, or interpretation of data: A.D.A., S.A.P., M.S., D.A.A., A.S., A.K., B.K., C.S.M. Drafting the work: A.D.A. Revising the work critically for important intellectual content: S.A.P., C.S.M. Final approval of the submitted version: A.D.A., S.A.P., M.S., D.A.A., A.S., A.K., B.K., C.S.M. Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: A.D.A., S.A.P., M.S., D.A.A., A.S., A.K., B.K., C.S.M.

Corresponding author

Correspondence to Athanasios D. Anastasilakis.

Ethics declarations

Conflict of interest

C.S.M. is a consultant of Ansh Laboratories. A.K. and B.K. are Ansh Laboratories employees. A.D.A., S.A.P, M.S., D.A.A., A.S. and P.M. have no conflict of interest in relation to the present study.

Ethical approval

All procedures performed in the study were in accordance with the ethical standards of the institutional research committees and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anastasilakis, A.D., Polyzos, S.A., Savvidis, M. et al. Association of activins, follistatins and inhibins with incident hip fracture in women with postmenopausal osteoporosis: a proof of concept, case–control study. Endocrine 81, 573–578 (2023). https://doi.org/10.1007/s12020-023-03402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03402-x

Keywords

Navigation