Skip to main content

Advertisement

Log in

Prolactin and spermatogenesis: new lights on the interplay between prolactin and sperm parameters

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

To clarify the relationship between one the most gender-specific hormone, i.e. prolactin (PRL), and semen parameters in men.

Methods

A retrospective, observational, cohort, real-world study was carried out, enrolling all men performing a semen analysis and PRL examination from 2010 to 2022. For each patient, the first semen analys was extracted, associated to PRL, total testosterone (TT), follicle stimulating hormone (FSH) and luteinizing hormone (LH). Hyperprolactinaemia (>35 ng/mL) was excluded.

Results

1211 subjects were included. PRL serum levels were lower in normozoospermia compared to azoospermia (p = 0.002) and altered semen parameters (p = 0.048) groups. TT serum levels were not different among groups (p = 0.122). Excluding azoospermic men, PRL serum levels were lower in normozoospermic patients, when compared to other groups of semen alterations. An inverse correlation was detected between PRL and sperm concentration. Considering normozospermic subjects, PRL was directly related to both non-progressive sperm motility (p = 0.014) and normal sperm morphology (p = 0.040). Subdiving the cohort in quartiles according to PRL distribution, the highest motilities were observed in the second PRL quartile (8.30–11.10 ng/mL) and asthenozoospermia was significantly predicted by FSH (p < 0.001) and second PRL quartile (p = 0.045).

Conclusion

The PRL-spermatogenesis connection seems to be mild, although low-normal PRL levels are associated with the best spermatogenetic profile. PRL serum levels could mirror the immunoregulatory status within the testis, suggesting that there is a sort of ‘PRL optimal window’ reflecting an efficent spermatogenesis. Alternatively, men with good semen parameters might have a higher central dopaminergic tone resulting in low PRL levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Dresel, The effect of prolactin on the estrus cycle of nonparous mice. Science (New York, NY) 82(2121), 173 (1935). https://doi.org/10.1126/science.82.2121.173

    Article  CAS  Google Scholar 

  2. G. Rastrelli, G. Corona, M. Maggi, The role of prolactin in andrology: what is new. Rev. Endocr. Metab. Disord. 16(3), 233–248 (2015). https://doi.org/10.1007/s11154-015-9322-3

    Article  CAS  PubMed  Google Scholar 

  3. V. Bernard, J. Young, N. Binart, Prolactin - a pleiotropic factor in health and disease. Nat. Rev. Endocr. 15(6), 356–365 (2019). https://doi.org/10.1038/s41574-019-0194-6

    Article  CAS  Google Scholar 

  4. I.C. Chikanza, Prolactin and neuroimmunomodulation: in vitro and in vivo observations. Annals N.Y. Acad. Sci. 876, 119–130 (1999). https://doi.org/10.1111/j.1749-6632.1999.tb07629.x

    Article  CAS  Google Scholar 

  5. Hypoprolactinaemia (1987). Lancet 1 (8546):1356–1357

  6. E. del Pozo, L. Varga, K.D. Schulz, H.J. Künzig, P. Marbach, G.L. del Campo, U. Eppenberger, Pituitary and ovarian response patterns to stimulation in the postpartum and in galactorrhea-amenorrhea. The role of prolactin. Obstet. Gynecol. 46(5), 539–543 (1975)

    PubMed  Google Scholar 

  7. D.F. Archer, J.B. Josimovich, Ovarian response to exogenous gonadotropins in women with elevated serum prolactin. Obstet. Gynecol. 48(2), 155–157 (1976)

    CAS  PubMed  Google Scholar 

  8. D.W. Polson, M. Sagle, H.D. Mason, J. Adams, H.S. Jacobs, S. Franks, Ovulation and normal luteal function during LHRH treatment of women with hyperprolactinaemic amenorrhoea. Clin. Endocrin. 24(5), 531–537 (1986). https://doi.org/10.1111/j.1365-2265.1986.tb03282.x

    Article  CAS  Google Scholar 

  9. P. Lecomte, C. Lecomte, J. Lansac, J. Gallier, C.B. Sonier, C. Simonetta, Pregnancy after intravenous pulsatile gonadotropin-releasing hormone in a hyperprolactinaemic woman resistant to treatment with dopamine agonists. Euro. J. Obstet. Gynecol. Reprod. Biol. 74(2), 219–221 (1997). https://doi.org/10.1016/s0301-2115(97)00091-2

    Article  CAS  Google Scholar 

  10. P. Bouchard, M. Lagoguey, S. Brailly, G. Schaison, Gonadotropin-releasing hormone pulsatile administration restores luteinizing hormone pulsatility and normal testosterone levels in males with hyperprolactinemia. J. Clin. Endocrinol. Metab. 60(2), 258–262 (1985). https://doi.org/10.1210/jcem-60-2-258

    Article  CAS  PubMed  Google Scholar 

  11. R. Demura, M. Ono, H. Demura, K. Shizume, H. Oouchi, Prolactin directly inhibits basal as well as gonadotropin-stimulated secretion of progesterone and 17 beta-estradiol in the human ovary. J. Clin. Endocrinol. Metab. 54(6), 1246–1250 (1982). https://doi.org/10.1210/jcem-54-6-1246

    Article  CAS  PubMed  Google Scholar 

  12. K.P. McNatty, R.S. Sawers, A.S. McNeilly, A possible role for prolactin in control of steroid secretion by the human Graafian follicle. Nature 250(5468), 653–655 (1974). https://doi.org/10.1038/250653a0

    Article  CAS  PubMed  Google Scholar 

  13. I.M. Spitz, H. Landau, U. Almaliach, E. Rosen, N. Brautbar, A. Russell, Diminished prolactin reserve: a case report. J. Clin. Endocrinol. Metab. 45(3), 412–418 (1977). https://doi.org/10.1210/jcem-45-3-412

    Article  CAS  PubMed  Google Scholar 

  14. A. Kauppila, P. Chatelain, P. Kirkinen, S. Kivinen, A. Ruokonen, Isolated prolactin deficiency in a woman with puerperal alactogenesis. J. Clin. Endocrinol. Metab. 64(2), 309–312 (1987). https://doi.org/10.1210/jcem-64-2-309

    Article  CAS  PubMed  Google Scholar 

  15. G. Corona, E. Mannucci, E.A. Jannini, F. Lotti, V. Ricca, M. Monami, V. Boddi, E. Bandini, G. Balercia, G. Forti, M. Maggi, Hypoprolactinemia: a new clinical syndrome in patients with sexual dysfunction. J. Sexual Med. 6(5), 1457–1466 (2009). https://doi.org/10.1111/j.1743-6109.2008.01206.x

    Article  CAS  Google Scholar 

  16. R. Krysiak, K. Kowalcze, B. Okopień, Sexual function and depressive symptoms in young women with hypoprolactinaemia. Clin. Endocrinol. 93(4), 482–488 (2020). https://doi.org/10.1111/cen.14283

    Article  CAS  Google Scholar 

  17. E. Maseroli, G. Corona, G. Rastrelli, F. Lotti, S. Cipriani, G. Forti, E. Mannucci, M. Maggi, Prevalence of endocrine and metabolic disorders in subjects with erectile dysfunction: a comparative study. J. Sexual Med. 12(4), 956–965 (2015). https://doi.org/10.1111/jsm.12832

    Article  Google Scholar 

  18. C. Bole-Feysot, V. Goffin, M. Edery, N. Binart, P.A. Kelly, Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19(3), 225–268 (1998). https://doi.org/10.1210/edrv.19.3.0334

    Article  CAS  PubMed  Google Scholar 

  19. G.F. Gonzales, G. Velasquez, M. Garcia-Hjarles, Hypoprolactinemia as related to seminal quality and serum testosterone. Arch. Androl. 23(3), 259–265 (1989). https://doi.org/10.3109/01485018908986849

    Article  CAS  PubMed  Google Scholar 

  20. C.S. Ufearo, O.E. Orisakwe, Restoration of normal sperm characteristics in hypoprolactinemic infertile men treated with metoclopramide and exogenous human prolactin. Clin. Pharmacol. Ther. 58(3), 354–359 (1995). https://doi.org/10.1016/0009-9236(95)90253-8

    Article  CAS  PubMed  Google Scholar 

  21. F. Lotti, G. Corona, E. Maseroli, M. Rossi, A. Silverii, S. Degl’innocenti, G. Rastrelli, G. Forti, M. Maggi, Clinical implications of measuring prolactin levels in males of infertile couples. Andrology 1(5), 764–771 (2013). https://doi.org/10.1111/j.2047-2927.2013.00114.x

    Article  CAS  PubMed  Google Scholar 

  22. WHO (2010) WHO laboratory manual for the examination and processing of human semen. 5th edn

  23. M. Maggi, J. Buvat, G. Corona, A. Guay, L.O. Torres, Hormonal causes of male sexual dysfunctions and their management (hyperprolactinemia, thyroid disorders, GH disorders, and DHEA). J Sexual Med. 10(3), 661–677 (2013). https://doi.org/10.1111/j.1743-6109.2012.02735.x

    Article  CAS  Google Scholar 

  24. R. Pirchio, C. Graziadio, A. Colao, R. Pivonello, R.S. Auriemma, Metabolic effects of prolactin. Front. Endocrinol. 13, 1015520 (2022). https://doi.org/10.3389/fendo.2022.1015520

    Article  Google Scholar 

  25. S. Sethi, C.M. Chaturvedi, Temporal synergism of neurotransmitters (serotonin and dopamine) affects testicular development in mice. Zoology (Jena) 112(6), 461–470 (2009). https://doi.org/10.1016/j.zool.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  26. A. Mayerhofer, M.B. Frungieri, S. Fritz, A. Bulling, B. Jessberger, H.J. Vogt, Evidence for catecholaminergic, neuronlike cells in the adult human testis: changes associated with testicular pathologies. J. Androl. 20(3), 341–347 (1999)

    CAS  PubMed  Google Scholar 

  27. A. Mayerhofer, M. Danilchik, K.Y. Pau, H.E. Lara, L.D. Russell, S.R. Ojeda, Testis of prepubertal rhesus monkeys receives a dual catecholaminergic input provided by the extrinsic innervation and an intragonadal source of catecholamines. Biol. Reprod. 55(3), 509–518 (1996). https://doi.org/10.1095/biolreprod55.3.509

    Article  CAS  PubMed  Google Scholar 

  28. A. Mayerhofer, G. Lahr, K. Seidl, B. Eusterschulte, A. Christoph, M. Gratzl, The neural cell adhesion molecule (NCAM) provides clues to the development of testicular Leydig cells. J. Androl. 17(3), 223–230 (1996)

    CAS  PubMed  Google Scholar 

  29. K. Hentschel, A.E. Fleckenstein, T.W. Toney, D.M. Lawson, K.E. Moore, K.J. Lookingland, Prolactin regulation of tuberoinfundibular dopaminergic neurons: immunoneutralization studies. Brain Res. 852(1), 28–36 (2000). https://doi.org/10.1016/s0006-8993(99)02182-4

    Article  CAS  PubMed  Google Scholar 

  30. N. Aguila-Mansilla, W. Kedzierski, J.C. Porter, Testicular inhibition of tyrosine hydroxylase expression in tuberoinfundibular and nigrostriatal dopaminergic neurons. Endocrinology 129(2), 877–882 (1991). https://doi.org/10.1210/endo-129-2-877

    Article  CAS  PubMed  Google Scholar 

  31. S. Gu, L. Jing, Y. Li, J.H. Huang, F. Wang, Stress induced hormone and neuromodulator changes in menopausal depressive rats. Front. Psychiatr. 9, 253 (2018). https://doi.org/10.3389/fpsyt.2018.00253

    Article  Google Scholar 

  32. G. Mo, B. Hu, P. Wei, Q. Luo, X. Zhang, The role of chicken prolactin, growth hormone and their receptors in the immune system. Front. Microbiol. 13, 900041 (2022). https://doi.org/10.3389/fmicb.2022.900041

    Article  PubMed  PubMed Central  Google Scholar 

  33. V.V. Borba, G. Zandman-Goddard, Y. Shoenfeld, Prolactin and autoimmunity. Front. Immunol. 9, 73 (2018). https://doi.org/10.3389/fimmu.2018.00073

    Article  PubMed  PubMed Central  Google Scholar 

  34. G. Recalde, T. Moreno-Sosa, F. Yúdica, C.A. Quintero, M.B. Sánchez, G.A. Jahn, A.M. Kalergis, J.P. Mackern-Oberti, Contribution of sex steroids and prolactin to the modulation of T and B cells during autoimmunity. Autoimmun. Rev. 17(5), 504–512 (2018). https://doi.org/10.1016/j.autrev.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  35. M. Del Vecchio Filipin, V. Brazão, F.H. Santello, C.M.B. da Costa, M. Paula Alonso Toldo, F. Rossetto de Morais, J.C. do Prado Júnior, Does Prolactin treatment trigger imunoendocrine alterations during experimental T. cruzi infection? Cytokine 121, 154736 (2019). https://doi.org/10.1016/j.cyto.2019.154736

    Article  CAS  PubMed  Google Scholar 

  36. V.H.D. Río-Araiza, K.E. Nava-Castro, F. Alba-Hurtado, A. Quintanar-Stephano, H. Aguilar-Díaz, M.A. Muñoz-Guzmán, P. Ostoa-Saloma, M.D. Ponce-Regalado, J. Morales-Montor, Prolactin as immune cell regulator in Toxocara canis somatic larvae chronic infection. Biosci. Rep. 38(4), BSR20180305 (2018). https://doi.org/10.1042/bsr20180305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. G. Mo, B. Hu, G. Wang, T. Xie, H. Fu, Q. Zhang, R. Fu, M. Feng, W. Luo, H. Li, Q. Nie, X. Zhang, Prolactin affects the disappearance of ALV-J viremia in vivo and inhibits viral infection. Vet. Microbiol. 261, 109205 (2021). https://doi.org/10.1016/j.vetmic.2021.109205

    Article  CAS  PubMed  Google Scholar 

  38. R. Dill, A.M. Walker, Role of prolactin in promotion of immune cell migration into the mammary gland. J. Mammary Gland Biol. Neoplasia 22(1), 13–26 (2017). https://doi.org/10.1007/s10911-016-9369-0

    Article  PubMed  Google Scholar 

  39. E.W. Bernton, M.S. Meltzer, J.W. Holaday, Suppression of macrophage activation and T-lymphocyte function in hypoprolactinemic mice. Science (New York, NY) 239(4838), 401–404 (1988). https://doi.org/10.1126/science.3122324

    Article  CAS  Google Scholar 

  40. S.S. Devins, A. Miller, B.L. Herndon, L. O’Toole, G. Reisz, Effects of dopamine on T-lymphocyte proliferative responses and serum prolactin concentrations in critically ill patients. Crit. Care Med. 20(12), 1644–1649 (1992). https://doi.org/10.1097/00003246-199212000-00007

    Article  CAS  PubMed  Google Scholar 

  41. S. Dutta, N. Sandhu, P. Sengupta, M.G. Alves, R. Henkel, A. Agarwal, Somatic-immune cells crosstalk in-the-making of testicular immune privilege. Reprod. Sci.(Thousand Oaks, Calif) 29(10), 2707–2718 (2022). https://doi.org/10.1007/s43032-021-00721-0

    Article  Google Scholar 

  42. K. Purvis, O.P. Clausen, A. Olsen, E. Haug, V. Hansson, Prolactin and Leydig cell responsiveness to LH/hCG in the rat. Arch. Androl. 3(3), 219–230 (1979). https://doi.org/10.3109/01485017908988408

    Article  CAS  PubMed  Google Scholar 

  43. P.G. Gunasekar, B. Kumaran, P. Govindarajulu, Prolactin and Leydig cell steroidogenic enzymes in the bonnet monkey (Macaca radiata).Int. J Androl.11(1), 53–59 (1988). https://doi.org/10.1111/j.1365-2605.1988.tb01216.x

    Article  CAS  PubMed  Google Scholar 

  44. V. Papadopoulos, M.A. Drosdowsky, S. Carreau, In vitro effects of prolactin and dexamethasone on rat Leydig cell aromatase activity. Andrologia 18(1), 79–83 (1986). https://doi.org/10.1111/j.1439-0272.1986.tb01742.x

    Article  CAS  PubMed  Google Scholar 

  45. P. Guillaumot, E. Tabone, M. Benahmed, Sertoli cells as potential targets of prolactin action in the testis. Mol Cell. Endocrinol. 122(2), 199–206 (1996). https://doi.org/10.1016/0303-7207(96)03891-9

    Article  CAS  PubMed  Google Scholar 

  46. P.G. Gunasekar, B. Kumaran, P. Govindarajulu, Role of prolactin on Leydig, Sertoli and germ cellular neutral lipids in bonnet monkeys, Macaca radiata. Endocrinol. Jpn. 38(1), 1–8 (1991). https://doi.org/10.1507/endocrj1954.38.1

    Article  CAS  PubMed  Google Scholar 

  47. N. Pedrón, J. Giner, Effect of prolactin on the glycolytic metabolism of spermatozoa from infertile subjects. Fertil Steril 29(4), 428–430 (1978). https://doi.org/10.1016/s0015-0282(16)43218-8

    Article  PubMed  Google Scholar 

  48. A. Fukuda, C. Mori, H. Hashimoto, Y. Noda, T. Mori, K. Hoshino, Effects of prolactin during preincubation of mouse spermatozoa on fertilizing capacity in vitro. J. In Vitro Fert Embryo Transf. 6(2), 92–97 (1989). https://doi.org/10.1007/bf01130733

    Article  CAS  PubMed  Google Scholar 

  49. M. Lispi, P. Drakopoulos, G. Spaggiari, F. Caprio, N. Colacurci, M. Simoni, D. Santi, Testosterone serum levels are related to sperm DNA fragmentation index reduction after FSH administration in males with idiopathic infertility. Biomedicines 10(10), 2599 (2022). https://doi.org/10.3390/biomedicines10102599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. S. De Vincentis, M.C. Decaroli, F. Fanelli, C. Diazzi, M. Mezzullo, F. Morini, D. Bertani, J. Milic, F. Carli, G. Cuomo, D. Santi, G. Tartaro, S. Tagliavini, M.C. De Santis, L. Roli, T. Trenti, U. Pagotto, G. Guaraldi, V. Rochira, Health status is related to testosterone, estrone and body fat: moving to functional hypogonadism in adult men with HIV. Euro. J. Endocrinol./Euro. Fed. Endocr. Soc. 184(1), 107–122 (2021). https://doi.org/10.1530/eje-20-0855

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Santi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spaggiari, G., Costantino, F., Granata, A.R.M. et al. Prolactin and spermatogenesis: new lights on the interplay between prolactin and sperm parameters. Endocrine 81, 330–339 (2023). https://doi.org/10.1007/s12020-023-03375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03375-x

Keywords

Navigation